Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Schwerhörigkeit - Wenn das „Fagott“ defekt ist

19.11.2010
Grundlagenforschung zum Hören: CMPB-Forscher klären die Mechanismen und die Folgen eines mutierten Gens, das fürs Hören wichtig ist. Publikation in „NEURON“.

Schwerhörigkeit kann viele verschiedene Ursachen haben. Die Forschung sucht mittlerweile in den tieferen Ebenen und nimmt Gene und Abläufe an Zellmembranen unter die Lupe. Dabei kommen sie den biochemischen und physiologischen Geheimnissen des Hörens – und des Nicht-mehr-Hören-Könnens immer weiter auf die Spur.


Das Schema zeigt sowohl die normale (links) als auch die defekte Bändersynapse (rechts) zwischen innerer Haarzelle und postsynaptischer auditorischer Nervenfaser. Auffälligstes Merkmal der defekten Synapse, der das verankernde „Bassoon“-Protein (Fagott) fehlt, ist der Verlust des synaptischen Bandes. Darüber hinaus sind sowohl die Anzahl als auch die reguläre Anordnung der mit Neurotransmitter gefüllten synaptischen Vesikel und „ihrer“ eng benachbarten Ca2+-Kanäle verringert bzw. gestört. Insgesamt ist die Anzahl dieser „Basiseinheiten“ synaptischer Übertragung (gebildet von einem Vesikel und benachbarten Ca2+-Kanälen) an der defekten Synapse um etwa 50 % reduziert. Die betroffenen Mäuse zeigen eine mittelgradige Schwerhörigkeit, wobei insbesondere die zeitgenaue Umwandlung von Schallreizen in Nervenimpulse gestört ist. Abbildung: umg / Linda Hsu und Dr. Thomas Frank, InnenOhrLabor

Wissenschaftler am Göttinger DFG Forschungszentrum Molekularphysiologie des Gehirns (CMPB) haben jetzt im Tierversuch einen Defekt im Innenohr untersucht, der die zeitgenaue „Übersetzung“ von Höreindrücken in Nervensignale beeinträchtigt und dadurch zu einer mittelgradigen Schwerhörigkeit führt. Dafür untersuchten sie Mäuse mit einer Mutation in dem Gen für das synaptische Protein "Bassoon", englisch für das Blasinstrument „Fagott“. Die Ergebnisse ihrer Forschungen wurden jetzt im Wissenschaftsmagazin "Neuron" veröffentlicht. Die Forschungen standen unter der Leitung von Professor Dr. Tobias Moser, Leiter des Innenohr-Labors in der Abteilung Hals-Nasen-Ohrenheilkunde an der Universitätsmedizin Göttingen.

An diesem kooperativen Forschungsprojekt waren zudem Wissenschaftler der Servicegruppe „Elektronenmikroskopie“ von Dr. Dietmar Riedel und Wissen-schaftler um Dr. Alexander Egner aus der Abteilung „NanoBiophotonik“ von Prof. Dr. Stefan W. Hell am Max-Planck-Institut für biophysikalische Chemie sowie Kollegen aus Magdeburg und den USA beteiligt.

ORIGINALVERÖFFENTLICHUNG:
Frank T, Rutherford MA, Strenzke N, Neef A, Pangrsic T, Khimich D, Fetjova A, Gundelfinger ED, Liberman MC, Harke B, Bryan KE, Lee A, Egner A, Riedel D, Moser T (2010) Bassoon and the Synaptic Ribbon Organize Ca2+ Channels and Vesicles to Add Release Sites and Promote Refilling. Neuron (2010), doi:10.1016/j.neuron.2010.10.027
VON SCHALLWELLEN ZU ELEKTRISCHEN SIGNALEN
Wirklich hören können wir nur dann, wenn Schallwellen zuvor in korrekter Weise so in elektrische Signale umgewandelt werden, dass sie unser Gehirn anschließend weiterverarbeiten kann. Im Zentrum der Umwandlung stehen eine Vielzahl kleinster akustischer Detektoren, die inneren Haarzellen im Innenohr. Diese Haarzellen nehmen mittels feiner Härchen akustische Schwingungen wahr, geben dann chemische Botenstoffe ab, woraufhin Hörnervenfasern die Hörinformation ans Gehirn übertragen. Für die Wahrnehmung von Musik und Sprache ist hierbei insbesondere die zeitliche Präzision dieser „Übersetzung“ von großer Bedeutung.

In früheren Forschungsarbeiten hatten Prof. Moser und Kollegen bereits gezeigt, dass eine genetische Veränderung des "Bassoon"-Proteins zum Verlust des synaptischen Bandes führt. Dies ist eine spezielle Struktur der Synapsen (= Kontaktstellen) zwischen den Haarzellen und den nachgeschalteten Hörnerven-Fasern. Fehlt das synaptische Band, dann können die Haarzellen ihre wichtige Aufgabe der Signalübertragung zum Hörnerv nicht mehr korrekt erfüllen. Normalerweise schütten sie schnell chemische Botenstoffe in Richtung Hörnerv aus. Bei dem nun untersuchten Gendefekt ist genau diese Funktion gestört. Die Folge ist eine verminderte Weiterleitung der Hörinformation zum Hörnerv.

WELCHE MECHANISMEN FÜHREN ZUR STÖRUNG?
In der aktuellen Studie konnten die Forscher nun die dieser Störung zugrundeliegenden Mechanismen aufzeigen. Sie analysierten dafür im Detail die physio-logischen Abläufe auf der Ebene einzelner Haarzellen und sogar einzelner Haarzellsynapsen sowie deren Struktur. Dabei fanden sie heraus, dass es an den Haarzellsynapsen weniger Kalzium-Ionenkanäle als normal gibt. Auch stehen weniger Botenstoff enthaltende Vesikel an der synaptischen Membran der Haarzellen bereit. „Zusammen bilden Ionenkanäle und Vesikel eine Art „Basis-Modul“ dafür, dass die synaptische Übertragung von Haarzellen auf den Hörnerv funktionieren kann. Mehrere dieser „Module“ stehen jeder Synapse norma-lerweise zur Verfügung. In den Mäusen mit Bassoon-Defekt ist diese Anzahl jedoch um etwa die Hälfte reduziert“, sagt Dr. Thomas Frank, Erstautor der Studie und Mitarbeiter im Innenohrlabor an der Universitätsmedizin Göttingen. Zusätzlich wurden die Module nach der Vesikelfreisetzung langsamer wieder mit neuen Vesikeln gefüllt. Im Zusammenspiel führt dies zu einer Störung der zeitgenauen Umwandlung von Schallreizen in Nervensignale und letztlich einer mittelgradigen Schwerhörigkeit in den betroffenen Mäusen.

Die Studie gewährt darüber hinaus einen generellen, mechanistischen Einblick in die Struktur und Funktion von Synapsen. Prof. Moser: „Die Ergebnisse lassen die Grundlagen der synaptischen Signalübertragung im Gehirn besser verstehen, die der Funktion des höchst komplexen Hörsinns zu Grunde liegt.“

Zum DFG Forschungszentrum Molekularphysiologie des Gehirns: Das seit 2002 an der Universitätsmedizin Göttingen angesiedelte DFG Forschungszentrum Molekularphysiologie des Gehirns (CMPB) hat sich das Ziel gesetzt, molekulare Prozesse und Interaktionen in Nervenzellen detailliert zu analysieren, um langfristig Therapien für psychiatrische, neurologische und neurodegenerative Erkrankungen zu verbessern und weiterzuentwickeln.

INFORMATIONEN
zum CMPB: http://www.cmpb.de
zur Arbeitsgruppe von Prof. Dr. Tobias Moser: http://www.innerearlab.uni-goettingen.de

zum MPI für biophysikalische Chemie: http://www.mpibpc.mpg.de/start/index.php

WEITERE INFORMATIONEN:
Universitätsmedizin Göttingen, Georg-August-Universität
Abteilung Hals-Nasen-Ohrenheilkunde
Innenohrlabor
Prof. Dr. Tobias Moser, Telefon 0551 / 39-22837
tmoser@gwdg.de
Dr. Thomas Frank
tfrank1@gwdg.de

Stefan Weller | idw
Weitere Informationen:
http://www.universitaetsmedizin-goettingen.de/
http://www.innerearlab.uni-goettingen.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Pflanzlicher Wirkstoff lässt Wimpern wachsen
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

nachricht Wolkenbildung: Wie Feldspat als Gefrierkeim wirkt
09.12.2016 | Karlsruher Institut für Technologie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Elektronenautobahn im Kristall

Physiker der Universität Würzburg haben an einer bestimmten Form topologischer Isolatoren eine überraschende Entdeckung gemacht. Die Erklärung für den Effekt findet sich in der Struktur der verwendeten Materialien. Ihre Arbeit haben die Forscher jetzt in Science veröffentlicht.

Sie sind das derzeit „heißeste Eisen“ der Physik, wie die Neue Zürcher Zeitung schreibt: topologische Isolatoren. Ihre Bedeutung wurde erst vor wenigen Wochen...

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Rätsel um Mott-Isolatoren gelöst

Universelles Verhalten am Mott-Metall-Isolator-Übergang aufgedeckt

Die Ursache für den 1937 von Sir Nevill Francis Mott vorhergesagten Metall-Isolator-Übergang basiert auf der gegenseitigen Abstoßung der gleichnamig geladenen...

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Firmen- und Forschungsnetzwerk Munitect tagt am IOW

08.12.2016 | Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Hochgenaue Versuchsstände für dynamisch belastete Komponenten – Workshop zeigt Potenzial auf

09.12.2016 | Seminare Workshops

Ein Nano-Kreisverkehr für Licht

09.12.2016 | Physik Astronomie

Pflanzlicher Wirkstoff lässt Wimpern wachsen

09.12.2016 | Biowissenschaften Chemie