Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Schwerhörigkeit - Wenn das „Fagott“ defekt ist

19.11.2010
Grundlagenforschung zum Hören: CMPB-Forscher klären die Mechanismen und die Folgen eines mutierten Gens, das fürs Hören wichtig ist. Publikation in „NEURON“.

Schwerhörigkeit kann viele verschiedene Ursachen haben. Die Forschung sucht mittlerweile in den tieferen Ebenen und nimmt Gene und Abläufe an Zellmembranen unter die Lupe. Dabei kommen sie den biochemischen und physiologischen Geheimnissen des Hörens – und des Nicht-mehr-Hören-Könnens immer weiter auf die Spur.


Das Schema zeigt sowohl die normale (links) als auch die defekte Bändersynapse (rechts) zwischen innerer Haarzelle und postsynaptischer auditorischer Nervenfaser. Auffälligstes Merkmal der defekten Synapse, der das verankernde „Bassoon“-Protein (Fagott) fehlt, ist der Verlust des synaptischen Bandes. Darüber hinaus sind sowohl die Anzahl als auch die reguläre Anordnung der mit Neurotransmitter gefüllten synaptischen Vesikel und „ihrer“ eng benachbarten Ca2+-Kanäle verringert bzw. gestört. Insgesamt ist die Anzahl dieser „Basiseinheiten“ synaptischer Übertragung (gebildet von einem Vesikel und benachbarten Ca2+-Kanälen) an der defekten Synapse um etwa 50 % reduziert. Die betroffenen Mäuse zeigen eine mittelgradige Schwerhörigkeit, wobei insbesondere die zeitgenaue Umwandlung von Schallreizen in Nervenimpulse gestört ist. Abbildung: umg / Linda Hsu und Dr. Thomas Frank, InnenOhrLabor

Wissenschaftler am Göttinger DFG Forschungszentrum Molekularphysiologie des Gehirns (CMPB) haben jetzt im Tierversuch einen Defekt im Innenohr untersucht, der die zeitgenaue „Übersetzung“ von Höreindrücken in Nervensignale beeinträchtigt und dadurch zu einer mittelgradigen Schwerhörigkeit führt. Dafür untersuchten sie Mäuse mit einer Mutation in dem Gen für das synaptische Protein "Bassoon", englisch für das Blasinstrument „Fagott“. Die Ergebnisse ihrer Forschungen wurden jetzt im Wissenschaftsmagazin "Neuron" veröffentlicht. Die Forschungen standen unter der Leitung von Professor Dr. Tobias Moser, Leiter des Innenohr-Labors in der Abteilung Hals-Nasen-Ohrenheilkunde an der Universitätsmedizin Göttingen.

An diesem kooperativen Forschungsprojekt waren zudem Wissenschaftler der Servicegruppe „Elektronenmikroskopie“ von Dr. Dietmar Riedel und Wissen-schaftler um Dr. Alexander Egner aus der Abteilung „NanoBiophotonik“ von Prof. Dr. Stefan W. Hell am Max-Planck-Institut für biophysikalische Chemie sowie Kollegen aus Magdeburg und den USA beteiligt.

ORIGINALVERÖFFENTLICHUNG:
Frank T, Rutherford MA, Strenzke N, Neef A, Pangrsic T, Khimich D, Fetjova A, Gundelfinger ED, Liberman MC, Harke B, Bryan KE, Lee A, Egner A, Riedel D, Moser T (2010) Bassoon and the Synaptic Ribbon Organize Ca2+ Channels and Vesicles to Add Release Sites and Promote Refilling. Neuron (2010), doi:10.1016/j.neuron.2010.10.027
VON SCHALLWELLEN ZU ELEKTRISCHEN SIGNALEN
Wirklich hören können wir nur dann, wenn Schallwellen zuvor in korrekter Weise so in elektrische Signale umgewandelt werden, dass sie unser Gehirn anschließend weiterverarbeiten kann. Im Zentrum der Umwandlung stehen eine Vielzahl kleinster akustischer Detektoren, die inneren Haarzellen im Innenohr. Diese Haarzellen nehmen mittels feiner Härchen akustische Schwingungen wahr, geben dann chemische Botenstoffe ab, woraufhin Hörnervenfasern die Hörinformation ans Gehirn übertragen. Für die Wahrnehmung von Musik und Sprache ist hierbei insbesondere die zeitliche Präzision dieser „Übersetzung“ von großer Bedeutung.

In früheren Forschungsarbeiten hatten Prof. Moser und Kollegen bereits gezeigt, dass eine genetische Veränderung des "Bassoon"-Proteins zum Verlust des synaptischen Bandes führt. Dies ist eine spezielle Struktur der Synapsen (= Kontaktstellen) zwischen den Haarzellen und den nachgeschalteten Hörnerven-Fasern. Fehlt das synaptische Band, dann können die Haarzellen ihre wichtige Aufgabe der Signalübertragung zum Hörnerv nicht mehr korrekt erfüllen. Normalerweise schütten sie schnell chemische Botenstoffe in Richtung Hörnerv aus. Bei dem nun untersuchten Gendefekt ist genau diese Funktion gestört. Die Folge ist eine verminderte Weiterleitung der Hörinformation zum Hörnerv.

WELCHE MECHANISMEN FÜHREN ZUR STÖRUNG?
In der aktuellen Studie konnten die Forscher nun die dieser Störung zugrundeliegenden Mechanismen aufzeigen. Sie analysierten dafür im Detail die physio-logischen Abläufe auf der Ebene einzelner Haarzellen und sogar einzelner Haarzellsynapsen sowie deren Struktur. Dabei fanden sie heraus, dass es an den Haarzellsynapsen weniger Kalzium-Ionenkanäle als normal gibt. Auch stehen weniger Botenstoff enthaltende Vesikel an der synaptischen Membran der Haarzellen bereit. „Zusammen bilden Ionenkanäle und Vesikel eine Art „Basis-Modul“ dafür, dass die synaptische Übertragung von Haarzellen auf den Hörnerv funktionieren kann. Mehrere dieser „Module“ stehen jeder Synapse norma-lerweise zur Verfügung. In den Mäusen mit Bassoon-Defekt ist diese Anzahl jedoch um etwa die Hälfte reduziert“, sagt Dr. Thomas Frank, Erstautor der Studie und Mitarbeiter im Innenohrlabor an der Universitätsmedizin Göttingen. Zusätzlich wurden die Module nach der Vesikelfreisetzung langsamer wieder mit neuen Vesikeln gefüllt. Im Zusammenspiel führt dies zu einer Störung der zeitgenauen Umwandlung von Schallreizen in Nervensignale und letztlich einer mittelgradigen Schwerhörigkeit in den betroffenen Mäusen.

Die Studie gewährt darüber hinaus einen generellen, mechanistischen Einblick in die Struktur und Funktion von Synapsen. Prof. Moser: „Die Ergebnisse lassen die Grundlagen der synaptischen Signalübertragung im Gehirn besser verstehen, die der Funktion des höchst komplexen Hörsinns zu Grunde liegt.“

Zum DFG Forschungszentrum Molekularphysiologie des Gehirns: Das seit 2002 an der Universitätsmedizin Göttingen angesiedelte DFG Forschungszentrum Molekularphysiologie des Gehirns (CMPB) hat sich das Ziel gesetzt, molekulare Prozesse und Interaktionen in Nervenzellen detailliert zu analysieren, um langfristig Therapien für psychiatrische, neurologische und neurodegenerative Erkrankungen zu verbessern und weiterzuentwickeln.

INFORMATIONEN
zum CMPB: http://www.cmpb.de
zur Arbeitsgruppe von Prof. Dr. Tobias Moser: http://www.innerearlab.uni-goettingen.de

zum MPI für biophysikalische Chemie: http://www.mpibpc.mpg.de/start/index.php

WEITERE INFORMATIONEN:
Universitätsmedizin Göttingen, Georg-August-Universität
Abteilung Hals-Nasen-Ohrenheilkunde
Innenohrlabor
Prof. Dr. Tobias Moser, Telefon 0551 / 39-22837
tmoser@gwdg.de
Dr. Thomas Frank
tfrank1@gwdg.de

Stefan Weller | idw
Weitere Informationen:
http://www.universitaetsmedizin-goettingen.de/
http://www.innerearlab.uni-goettingen.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress
23.02.2018 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

nachricht Wie Zellen unterschiedlich auf Stress reagieren
23.02.2018 | Max-Planck-Institut für molekulare Genetik

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics