Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Warum Schweiß antimikrobiell wirkt

09.03.2012
Das in den menschlichen Schweißdrüsen produzierte Peptid Dermcidin wirkt auf der Haut wie ein Antibiotikum und wehrt Infektionen ab.
Wie genau dies funktioniert, hat ein Forscherteam um Professorin Birgit Schittek an der Universität Tübingen in Kooperation mit Professorin Anne S. Ulrich vom Karlsruher Institut für Technologie (KIT) untersucht. Das Peptid bildet Ionenkanäle in der bakteriellen Membran, die das Membranpotenzial zerstören. Ihre Ergebnisse hat das Team heute in der Fachzeitschrift The Journal of Biological Chemistry, JBC, veröffentlicht.

Die Haut des Menschen bildet nicht nur eine physikalische Barriere gegen Fremdstoffe, sondern verfügt auch über ein chemisches Abwehrsystem gegen Bakterien, Viren und Pilze. Dazu produziert sie antimikrobielle Peptide, das heißt kurzkettige Aminosäureverbindungen, die sowohl Wachstum und Zusammensetzung der gesunden Hautflora kontrollieren als auch krank machende Mikroorganismen abwehren. Die Produktion von solchen antimikrobiellen Peptiden geschieht zum Teil ständig zum grundlegenden Schutz, zum Teil angeregt durch Infektionen oder Entzündungen.

In den menschlichen Schweißdrüsen wird das antimikrobielle Peptid Dermcidin produziert. Es wird mit dem Schweiß auf der Hautoberfläche verteilt, bleibt im Säureschutzmantel der Haut stabil und wirkt quasi als natürliches Breitband-Antibiotikum gegen viele bekannte Keime wie Kolibakterien und Staphylokokken sowie den Hefepilz Candida albicans. Dermcidin wird in in seiner aktiven Form in verschiedene Fragmente gespalten, darunter das anionische amphiphile – sowohl fett- als auch wasserliebende – Peptid DCD 1L.

Mehrere deutsche Wissenschaftler, unter ihnen die Professorinnen Birgit Schittek von der Eberhard Karls Universität Tübingen und Anne S. Ulrich vom Institut für Biologische Grenzflächen des KIT, haben die antimikrobielle Aktivität von DCD 1L nun genauer untersucht. Diese Forschungen, die im Rahmen des an der Universität Tübingen angesiedelten Sonderforschungsbereichs 766 „Die bakterielle Zellhülle“ durchgeführt wurden, ermöglichen erstmals, ein molekulares Modell für die antimikrobielle Wirkung eines anionischen Peptids im menschlichen Schweiß zu erstellen. In JBC, The Journal of Biological Chemistry, veröffentlichen die Wissenschaftler diese Ergebnisse aus dem Promotionsvorhaben der Erstautorin Maren Paulmann.

Die Forscher stellten fest, dass DCD 1L ein außergewöhnlich langes anionisches Peptid ist, das ideal an das salzig-saure Milieu des menschlichen Schweißes angepasst ist. Indem es Ionenkanäle in der bakteriellen Membran bildet und damit das Membranpotenzial zerstört, hindert es die Zelle daran Energie zu gewinnen. Begünstigt wird die Bildung der Ionenkanäle durch das Spurenelement Zink (Zn2+), welches eine Selbstorganisation von DCD 1L induziert, wenn das Peptid an bakterielle Lipiddoppelschichten bindet.

Da es bei der Untersuchung von membrangebundenen Proteinen besonders schwierig ist, die Lipide der Biomembran mit zu berücksichtigen, wendeten die Forscher mehrere Tricks an. Bei der Aufklärung der Peptidwirkung spielten elektro-physiologische Messungen und strukturbiologische Methoden eine wesentliche Rolle. Suat Özdirekcan vom Max-Planck-Institut für Entwicklungsbiologie in Tübingen untersuchte die Sebstassemblierung von DCD 1L über die Diffusionseigenschaften in einem Membran-imitierenden Lösungsmittel. Die mechanische Zerstörung von Membranen wurde von Maren Paulmann in Zusammenarbeit mit Thomas Arnold und Dirk Linke vom Max-Planck-Institut anhand der elektrischen Leitfähigkeit durch Lipiddoppelschichten bewiesen und von Annika Kopp und Thomas Gutsmann vom Forschungszentrum Borstel mittles Rasterkraftmikroskopie bildlich dargestellt.

Die molekulare Struktur von DCD 1L und seine Einbettung in Membranen wurde von Jochen Bürck am Karlsruher Institut für Technologie durch die Messtechnik des Circulardichroismus (CD) mit UV-Licht aufgeklärt. Für solche Anwendungen wurde unlängst am KIT Campus Nord eine Synchrotron-CD Beamline installiert, die mit einem erweiterten Spektralbereich die Qualität der Messungen weiter steigern wird. Diese und weitere Beamlines an der Synchrotonquelle ANKA stehen als sogenannte Nutzer-Einrichtung Strukturbiologen und Chemikern aus aller Welt offen.

Literaturnachweis:
Maren Paulmann, Thomas Arnold, Dirk Linke, Suat Özdirekcan, Annika Kopp, Thomas Gutsmann, Hubert Kalbacher, Ines Wanke, Verena J. Schuenemann, Michael Habeck, Jochen Bürck, Anne S. Ulrich, Birgit Schittek: Structure-activity analysis of the dermcidin-derived peptide DCD-1L, an anionic antimicrobial peptide present in human sweat. JBC, The Journal of Biological Chemistry, March 9, 2012. http://www.jbc.org/cgi/doi/10.1074/jbc.M111.332270
Portal der Arbeitsgruppe von Prof. Anne Ulrich
http://www.ibg.kit.edu/nmr/260.php
Mehr Informationen zu CD-Messungen an der Synchrotronquelle ANKA
http://www.kit.edu/besuchen/pi_2010_3950.php
http://ankaweb.fzk.de/website.php?page=instrumentation_beam&id=21

Portal der Arbeitsgruppe von Prof. Birgit Schittek in Tübingen
http://www.dermonko.de/arbeitsbereiche/forschung/ag-natuerliche-immunitaet-haut.html

Das Karlsruher Institut für Technologie (KIT) ist eine Körperschaft des öffentlichen Rechts nach den Gesetzen des Landes Baden-Württemberg. Es nimmt sowohl die Mission einer Universität als auch die Mission eines nationalen Forschungszentrums in der Helmholtz-Gemeinschaft wahr. Das KIT verfolgt seine Aufgaben im Wissensdreieck Forschung – Lehre – Innovation.

Monika Landgraf | Karlsruher Institut für Technolo
Weitere Informationen:
http://www.kit.edu

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Molekulare Schalter im Detail erforscht
07.12.2016 | Ruhr-Universität Bochum

nachricht Rückgang großer fruchtfressender Vögel bedroht Tropenwälder
07.12.2016 | Senckenberg Forschungsinstitut und Naturmuseen

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Wie sich Zellen gegen Salmonellen verteidigen

Bioinformatiker der Goethe-Universität haben das erste mathematische Modell für einen zentralen Verteidigungsmechanismus der Zelle gegen das Bakterium Salmonella entwickelt. Sie können ihren experimentell arbeitenden Kollegen damit wertvolle Anregungen zur Aufklärung der beteiligten Signalwege geben.

Jedes Jahr sind Salmonellen weltweit für Millionen von Infektionen und tausende Todesfälle verantwortlich. Die Körperzellen können sich aber gegen die...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rückgang großer fruchtfressender Vögel bedroht Tropenwälder

07.12.2016 | Biowissenschaften Chemie

Wenn das Handy heimlich zuhört: Abwehr ungewollten Audiotrackings durch akustische Cookies

07.12.2016 | Informationstechnologie

Weiterbildung zu statistischen Methoden in der Versuchsplanung und -auswertung

06.12.2016 | Seminare Workshops