Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Schwefliges Pingpong in den Harnwegen

18.12.2008
Es ist selten, dass man für bekannte Prozesse noch völlig neue Proteinstrukturen findet.

Doch genau das gelang ETH-Molekularbiologen. Sie untersuchten das Protein ASST, das in pathogenen E. coli-Bakterien vorkommt, die Harnwegsinfektionen verursachen. Neben der neuen Struktur stiessen die Forscher auch noch auf einen Pingpong ähnlichen Übertragungsmechanismus, bei dem der "Signalball" auf bisher nicht beobachtete Weise festgehalten wird.

Informationsübertragung ist eine grundlegende Eigenschaft von biologischen Systemen. Die meisten denken dabei an die Übertragung von Erbinformation oder das Feuern von Nervenzellen. Auf einer noch basaleren Stufe laufen die Signalübertragungen in und zwischen Zellen ab. Hier kommen ganz kleine Signalmoleküle zum Einsatz, die beispielsweise Phosphat- oder Sulfatgruppen enthalten. Letztere enthalten ein Schwefelatom.

Da diese Prozesse so grundlegend sind, widmete ihnen die Forschung viel Zeit, so dass eine grosse Zahl an Abläufen und involvierten Strukturen bekannt ist. Umso überraschender ist es, dass ETH-Forscher bei einem Übertragungsprozess mit sulfatierten Molekülen auf ein Protein, eine sogenannte Sulfotransferase, stiessen, deren Funktion bekannt ist, die aber eine bisher unbekannte Struktur aufweist. Die Gruppe von Rudolf Glockshuber veröffentlichte kürzlich zu dem ASST genannten Protein eine Arbeit in der Fachzeitschrift PNAS.

ETH-Forscher kamen über Disulfidbrücke

Wie oft in der Forschung erfolgte die neue Einsicht in die Signalübertragung nicht von Forschern, welche direkt diesen Prozess untersuchen wollten. Die Glockshuber-Gruppe ist seit längerem interessiert an Mechanismen der Proteinfaltung. Für diese spielen unter anderem Disulfidbrücken, Bindungen zwischen zwei Schwefelatomen der Proteinkette, eine wichtige Rolle. Als die Wissenschaftler Gendatenbanken durchforsteten, entdeckten sie bei E. coli-Stämmen, die Harnweginfektionen verursachen, eine interessante Kombination. Hier lagen nämlich zwei Proteine der Disulfidbrückenbau-Maschinerie neben ASST. Da in Bakterien häufig Gene beieinander liegen, die in einen gemeinsamen Prozess eingebunden sind, lag eine Vermutung nahe: ASST könnte ein geeignetes Protein sein, um Disulfidbrückenbildung zu studieren.

Die ETH-Forscher beschlossen darum, die Struktur von ASST aufzuklären. Das war aber gar nicht so einfach. Denn das Protein ist gross und kommt nur in geringen Mengen in einem als Periplasma bezeichneten Raum vor. Indem aber die Forscher die Bakterien im grossen Massstab züchteten, erhielten sie dann doch genügend Material, um die Proteine röntgenkristallographisch zu analysieren. Dafür züchteten sie Kristalle von ASST und untersuchten diese an der Swiss Light Source am Paul Scherrer Institut in Villigen.

Zwei Propeller, die einen Käfig bilden

Mit dieser Analyse, die eine Auflösung von zwei Ångström hatte, zeigte sich in der Tat, dass ASST eine extrem kurze Disulfidbrücke besitzt, die möglicherweise nur durch die mit ASST assoziierten Disulfid-Einbau-Enzyme gebildet werden kann. Diese Disulfidbrücke trägt wesentlich zur korrekten Faltung des Proteins bei und könnte auch die Aktivität des Proteins beeinflussen. Doch diese Erkenntnisse gerieten im Licht der anderen Befunde fast etwas in den Schatten. Denn den Forschern enthüllte sich eine bisher nie gesehene Proteinstruktur. Sie besteht auf zwei gleichen propellerartigen Teilen. Die Reaktionszentren liegen dabei jeweils im trichterförmigen Zentrum der beiden Propeller, die aus sogenannten b-Faltblattstrukturen gebildet werden. So etwas war für eine Sulfotransferase noch nie beschrieben worden.

Doch wie funktioniert diese Zweipropeller-Maschine? Um das herauszufinden, ersetzten die Forscher einerseits einzelne Aminosäuren, also die Bestandteile des Gesamtproteins. Andererseits gaben sie Stoffe hinzu, welche bei der Sulfatübertragung als Sulfat-Donoren fungieren. Erneut röntgenkristallographische aber auch biochemische Analysen komplementierten das Bild. Es zeigte sich, dass rund fünf stickstoffhaltige Aminosäuren für die Funktion von ASST zentral sind. Sie bilden einen Reaktionskäfig, in dem sowohl der Donor als auch der Empfänger der Sulfatgruppe gefangen gehalten wird. Sicher ist, dass während der Übergabe das Signalmolekül direkt, sogenannt kovalent an eine Histidin-Seitenkette von ASST gebunden wird. Der "Signalball" wird also zuerst vom Sulfat-Donor zu ASST und nachher wieder zurück an den Empfänger gespielt. Auch dieser Pingppong-Mechanismus ist innerhalb der schwefligen Signalübertragung einzigartig.

Angriffspunkt gegen die "bösen" E. coli-Stämme

Neue Struktur, neuer Mechanismus - das eröffnet Perspektiven, die möglicherweise auch medizinisch relevant werden könnten. Goran Maloj?i?; Erstautor der Studie, weist auf mehrere Aspekte hin. ASST komme nicht in Säugern vor. Dadurch eigne sich das Protein grundsätzlich als Angriffspunkt für Medikamente. Weiter sei von Vorteil, dass ASST bisher nur in krankmachenden E. coli-Bakterienstämmen gefunden wurde und in den anderen nicht. Schalte man das Protein also aus, gefährde man nicht noch andere nützliche Bakterien.

Wie sich die Aktivität des Proteins beeinflussen lässt, möchte Malojcic in weiteren Studien herausfinden. So will er beispielsweise zusammen mit in-silico-Chemikern, also Forschern, die chemische Moleküle am Computer entwerfen, Hemmstoffe für ASST entwickeln. Oder er kann sich auch vorstellen, mit Hilfe von ASST neue Moleküle mit Sulfatgruppen zu synthetisieren.

Literatur

Malojcic, Owen RL, Grimshaw JP, Brozzo MS, Dreher-Teo H, Glockshuber R: A structural and biochemical basis for PAPS-independent sulfuryl transfer by aryl sulfotransferase from uropathogenic Escherichia coli. Proc Natl Acad Sci USA. 2008 Dec 9, 105, 19217-19222. doi:10.1073/pnas.0806997105

Renata Cosby | idw
Weitere Informationen:
http://www.ethz.ch

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress
23.02.2018 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

nachricht Wie Zellen unterschiedlich auf Stress reagieren
23.02.2018 | Max-Planck-Institut für molekulare Genetik

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics