Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

In der Schwebe: Biologen untersuchen, warum Nervenzellen im All langsamer sind

08.04.2013
Versuchsreihen mit Flugzeug, Rakete und Raumkapsel / Forscher der Universität Hohenheim geben über Online-Tagebücher Einblicke in ihre Arbeit

Für Astronauten kann das schnell gefährlich werden: In der Schwerelosigkeit übertragen Nervenzellen Signale langsamer als auf der Erde. Bis heute ist nicht näher bekannt, weshalb. Mit aufwändigen Versuchsreihen in Flugzeugen, Raketen und Raumkapseln wollen Wissenschaftler der Universität Hohenheim dem Phänomen auf die Spur kommen.

Einblicke in ihre Forschung geben sie in Online-Tagebüchern auf: https://membranphysiologie.uni-hohenheim.de/69703. Das Bundesministerium für Wirtschaft und Technologie fördert das Forschungsprojekt mit über 350.000 Euro. Damit gehört es zu den Schwergewichten der Forschung an der Universität Hohenheim.

Die nächste Parabelflugkampagne des Deutschen Zentrums für Luft- und Raumfahrt (DLR) startet am 15. April 2013 in Bordeaux. Am 23. April steigt der Airbus A300 „Zero-G“ steil in den Himmel auf und erreicht in neun Kilometern Höhe seine maximale Flughöhe. An dieser Stelle leiten die Piloten umgehend den Sinkflug ein. Das Flugzeug stürzt 3.000 Meter in die Tiefe. An Bord herrscht 22 Sekunden lang Schwerelosigkeit. Dann steigt das Flugzeug erneut steil auf. So geht das fünfmal hintereinander.

Danach fliegt der Airbus bis zu zehn Minuten auf einer geraden Flugbahn. Nun haben die 40 Wissenschaftler an Bord – Biologen, Chemiker, Physiker und Mediziner – Zeit, ihre Experimente anzupassen und auf die nächsten fünf Parabeln vorzubereiten. Am Ende des Tages haben sie 31 geflogene Parabeln hinter sich – und genug Daten gesammelt für ihre Forschungsarbeit.

Dr. Florian Kohn, Mitarbeiter im Fachgebiet Membranphysiologie der Universität Hohenheim, ist einer der Wissenschaftler an Bord des Airbus. Er untersucht, wie Nervenzellen in der Schwerelosigkeit funktionieren: „Russische Kosmonauten waren früher oft monatelang im All“, sagt Dr. Kohn. „Es wurde unter anderem festgestellt, dass in der Schwerelosigkeit die Leitfähigkeit von Nerven, und damit die Reaktionsfähigkeit verlängert ist.“ Bis heute sei nicht restlos geklärt, weshalb.

Tumorzellen sterben in der Schwerelosigkeit verstärkt ab

„Klar ist bisher nur, dass die Signalübertragung in Zellen in der Schwerelosigkeit verändert ist“, erklärt Dr. Kohn. Als Teil der Ursache für die verlangsamte elektrische Aktivität in der Schwerelosigkeit, vermutet er die Beteiligung des sogenannten Zytoskeletts. Dessen Hauptfunktion bestehe darin, die Zelle zu stützen und ihre Form zu wahren. Darüber hinaus fungiere es als Verbindung zwischen Zellmembran und -kern.

„Offenbar reagiert das Zytoskelett einer Nervenzelle umgehend auf veränderte Schwereverhältnisse“, sagt Dr. Kohn. „Es passt sich an.“ Allerdings sei noch offen, wie und weshalb sich das auf die Signalübertragung auswirkt.

Dr. Claudia Ulbrich, ebenfalls Mitarbeiterin im Fachgebiet Membranphysiologie der Universität Hohenheim, hat bei Parabelflügen noch eine ganz andere Beobachtung gemacht: „Menschliche Tumorzellen sterben in der Schwerelosigkeit in erhöhter Zahl ab. Offenbar erkennen sie, dass sie krank sind und zerstören sich mittels Apoptose selbst.“ Auch dabei spielt das Zytoskelett vermutlich eine zentrale Rolle. Aber welche?

„Krebskranke zur Genesung ins Weltall zu schießen, sei aber nicht unbedingt eine gute Idee“, sagt die Tierärztin schmunzelnd. „Leider sterben auch gesunde Zellen in der Schwerelosigkeit vermehrt ab. Auch das Immunsystem ist negativ beeinflusst.“

Raumkapsel mit menschlichen Nervenzellen soll 2015 an die ISS andocken

Um solche Rätsel lösen zu können, sind 22 Sekunden Schwerelosigkeit im Parabelflug nicht genug. Deshalb soll Ende 2014 von der schwedischen Abschussbasis Esrange bei Kiruna eine unbemannte Rakete 250 Kilometer in die Erdatmosphäre aufsteigen, um dann minutenlang im freien Fall wieder auf die Erde zurückkehren.

„An Bord werden Zellkultur-Gefäße mit menschlichen Nervenzellen sein – und ein Mikroskop, das die Zellen während des Fluges filmt und hoch aufgelöste Fotos, sowie Videos zu uns auf die Erde sendet“, sagt Dr. Kohn. Gefahr für Anwohner bestehe bei dem Experiment nicht, versichert er. Ein Fallschirm bremst die Rakete so weit ab, dass sie weich landet, und die Proben unversehrt bleiben. Außerdem gebe es weit und breit keine Siedlungen.

Medikamente gegen verlangsamte Reaktionsfähigkeit

Noch höher hinaus soll es 2015 gehen: Dann, so hoffen die beiden Wissenschaftler von der Universität Hohenheim, soll eine Raumkapsel zur internationalen Raumstation ISS fliegen und dort andocken. Dr. Kohn und Dr. Ulbrich könnten dann zwei Wochen lang von der Erde aus beobachten, wie sich menschliche Nervenzellen in der Schwerelosigkeit verhalten und entwickeln.

Ob sich Zellen auch in der Schwerelosigkeit normal entwickeln, will Dr. Kohn herausfinden: „Es könnte ja sein, dass irgendwann in ferner Zukunft tatsächlich mal Kinder im Weltall geboren werden und aufwachsen“, sagt der Forscher.
Mit ihrer Forschung könnten sich Astronauten in Zukunft ohne verzögerte Reaktionsfähigkeit für längere Zeit im Weltall aufhalten: „Wenn bekannt ist, warum die Signalübertragung in Nervenzellen bei Schwerelosigkeit verzögert abläuft“, erklärt Dr. Kohn, „ist es grundsätzlich möglich, Medikamente dagegen zu entwickeln.“

Interessierte können die Flüge im Internet mitverfolgen. Dr. Ulbrich und Dr. Kohn werden zu den verschiedenen Kampagnen Online-Tagebücher führen, in denen die beiden Forscher ihre Eindrücke und Gedanken festhalten – und erste Ergebnisse vorstellen: https://membranphysiologie.uni-hohenheim.de/69703

Hintergrund: Forschungsprojekt

„Signalübertragung und -kaskaden in menschlichen Zellen unter variablen Schwerkraftbedingungen“ heißt das Forschungsprojekt von Dr. Kohn und Dr. Ulbrich. Die beiden Wissenschaftler von der Universität Hohenheim gehören zu den jüngsten Forschern, die beim DLR ein großes wissenschaftliches Projekt leiten. Es ist zum 1. Januar 2013 angelaufen und endet nach drei Jahren am 31. Dezember 2015. Das Bundesministerium für Wirtschaft und Technologie unterstützt das Forschungsprojekt mit über 350.000 Euro.

Hintergrund: Schwergewichte der Forschung

Rund 27 Millionen Euro an Drittmitteln akquirierten Wissenschaftler der Universität Hohenheim im vergangenen Jahr für Forschung und Lehre. In loser Folge präsentiert die Reihe „Schwergewichte der Forschung“ herausragende Forschungsprojekte mit einem Drittmittelvolumen von mindestens 250.000 Euro bei den Experimental- bzw. 125.000 Euro bei den Buchwissenschaften.

Kontakt für Medien:
Dr. Florian Kohn (Projektleiter), Universität Hohenheim, Fachgebiet Membranphysiologie,
Tel.: 0711/459-22273, E-Mail: Florian.P.M.Kohn@uni-hohenheim.de

Dr. Claudia Ulbrich, Universität Hohenheim, Fachgebiet Membranphysiologie,
Tel.: 0711/459 22273, E-Mail: claudia.ulbrich@uni-hohenheim.de

Florian Klebs | idw
Weitere Informationen:
http://www.uni-hohenheim.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Was nach der Befruchtung im Zellkern passiert
06.12.2016 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Forscher vergleichen Biodiversitätstrends mit dem Aktienmarkt
06.12.2016 | Helmholtz-Zentrum für Umweltforschung - UFZ

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Wie sich Zellen gegen Salmonellen verteidigen

Bioinformatiker der Goethe-Universität haben das erste mathematische Modell für einen zentralen Verteidigungsmechanismus der Zelle gegen das Bakterium Salmonella entwickelt. Sie können ihren experimentell arbeitenden Kollegen damit wertvolle Anregungen zur Aufklärung der beteiligten Signalwege geben.

Jedes Jahr sind Salmonellen weltweit für Millionen von Infektionen und tausende Todesfälle verantwortlich. Die Körperzellen können sich aber gegen die...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Was nach der Befruchtung im Zellkern passiert

06.12.2016 | Biowissenschaften Chemie

Tempo-Daten für das „Navi“ im Kopf

06.12.2016 | Medizin Gesundheit

Patienten-Monitoring in der eigenen Wohnung − Sensorenanzug für Schlaganfallpatienten

06.12.2016 | Medizintechnik