Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Schonende Cluster für Biomoleküle

06.04.2009
Wissenschaftler nutzen patentiertes Verfahren der "Transienten Matrix Desorption" erstmals erfolgreich für die Massenbestimmung komplexer Biomoleküle

Fortschritte in der biomedizinischen Forschung sind nicht denkbar ohne Fortschritte in der Identifizierung und Analyse der in lebenden Zellen enthaltenen Proteine.

Als Schlüsseltechnik hat sich hier die Massenspektrometrie herausgestellt. Sie setzt jedoch voraus, dass die Moleküle einzeln und in elektrisch geladener Form in der Gasphase vorliegen. Bei der dafür notwendigen Präparation können die empfindlichen Makromoleküle leicht zerstört werden.

Eine neue, sehr schonende Methode haben nun Forscher am MPQ in Zusammenarbeit mit der Hochschule Esslingen entwickelt. Bereits vor einigen Jahren ließen die MPQ-Forscher ein Verfahren patentieren, bei dem Strahlen aus neutralen Molekülclustern Atome und Moleküle von beliebigen Oberflächen abtragen. Wie Dr. Christoph Gebhardt, Dr. Anna Tomsic, Dr. Hartmut Schröder, Prof. Michael Dürr und Prof. Karl L. Kompa (emeritierter Direktor am MPQ und Leiter der Gruppe "Laserchemie") in der Zeitschrift Angewandte Chemie (10.1002/ange.200804431 DOI ) berichten, ist es ihnen nun erstmals gelungen, dieses Verfahren der Desorption mittels transienter Matrix erfolgreich auf große Biomoleküle wie z.B. Insulin anzuwenden.

Das Verfahren zeichnet sich dabei u. a. durch die sehr einfache Probenpräparation sowie den sehr schonenden Ablöseprozess aus, bei dem auch große Moleküle vollständig intakt bleiben, aus.

Die Gruppe "Laserchemie" von Emeritus Prof. Karl-Ludwig Kompa arbeitet schon lange mit Clustern aus polaren Molekülen (d.h. die Moleküle haben zwei Ladungsschwerpunkte, sind aber nach außen neutral), die sich bilden, wenn das Ausgangsgas ins Vakuum expandiert. Diese schneeballähnlichen Gebilde bestehen aus 1000 bis 10000 Einzelmolekülen, was einem Durchmesser von etwa 10 Nanometern entspricht. Der Zusammenhalt der Moleküle im Cluster ist allerdings nur schwach. Getrieben durch einen Gasjet aus Helium erreichen sie die zu untersuchende Oberfläche mit etwa dreifacher Schallgeschwindigkeit.
Im vorliegenden Experiment schießen die Forscher solche Cluster aus Schwefeldioxidmolekülen auf Festkörperoberflächen, auf die sie zuvor gelöste Biomoleküle als Film aufgebracht hatten. Aufgrund seines polaren Charakters kann ein Cluster während dieses Stoßes ein Biomolekül, das sich aus dem Lösungsmittel ein positiv geladenes Wasserstoffatom geschnappt hat, mit sich reißen (siehe auch Abbildung). Für einen Zeitraum von nur 10 Pikosekunden - das ist ein Hundertstel von einem Millionstel von einer Sekunde - heizt sich der Cluster im Stoß mit der Oberfläche auf. Danach zerplatzt der heiße Cluster, während das abgelöste Biomolekül - einzeln und elektrisch geladen - in einem herkömmlichen Massenspektrometer analysiert werden kann. "Wir können uns die Cluster als die kleinste denkbare Einheit vorstellen, in denen chemische Reaktionen wie in einem mikroskopischen Reagenzglas ablaufen können. Der Stoß mit der Oberfläche zerstört das Reagenzglas, und wir können die Reaktionsprodukte, sofern sie elektrisch geladen sind, bequem analysieren. Was wir hier machen, ist praktisch Nanochemie", erklärt Dr. Hartmut Schröder.

Auf diese Weise äußerst schonend präpariert, analysierten die Wissenschaftler eine Reihe von Biomolekülen wie Bombesin, Angiotensin oder Insulin mit Hilfe der Flugzeit-Massenspektrometrie. Bei diesem Verfahren wird die Masse aus der Zeit abgeleitet, die das geladene Molekül nach Beschleunigung in einem elektrostatischen Feld zum Durchfliegen einer gegebenen Wegstrecke benötigt. Die Messungen zeigten, dass auf diese Weise nicht nur die einzelnen Biomoleküle identifiziert werden können, sondern vor allem auch, dass die desorbierten Biomoleküle den heftigen Cluster-Oberflächenstoß völlig unbeschadet überstehen. "Dabei zeichnet sich die Methode schon heute durch eine sehr hohe Empfindlichkeit im Femtomolbereich aus", betont Prof. Karl-Ludwig Kompa. "Es gilt nun, diese Methode vom Forschungsstadium in Richtung Anwendung weiterzuentwickeln", ergänzt Prof. Michael Dürr. "Dafür müssen wir sowohl die der Desorption zugrunde liegenden Prozesse besser verstehen, als auch die technischen Voraussetzungen für eine weitere Steigerung der Nachweisempfindlichkeit schaffen." Das hier beschriebene Verfahren soll deshalb im Rahmen der bestehenden Kooperation zwischen dem MPQ und der Hochschule Esslingen weiter erforscht werden. [OM]

Originalveröffentlichung:
Christoph R. Gebhardt, Anna Tomsic, Hartmut Schröder, Michael Dürr, Karl L. Kompa
"Matrix-free Formation of Gas-Phase Biomolecular Ions by Soft Cluster-Induced Desorption"

Angewandte Chemie Int. Ed., im Druck, DOI: 10.1002/anie.200804431

Kontakt:
Prof. Dr. Karl-Ludwig Kompa (karl-ludwig.kompa@mpq.mpg.de)
Tel.: 089 32905 703, Fax: 089 32905 313
Dr. Hartmut Schröder (hartmut.schroeder@mpq.mpg.de)
Tel.: 089 32905 231, Fax: 089 32905 313
Max-Planck-Institut für Quantenoptik
Hans-Kopfermann-Straße 1
85748 Garching
Prof. Dr. Michael Dürr (michael.duerr@hs-esslingen.de)
Tel.: 0711 3973554, Fax: 0711 3973502
Hochschule Esslingen
Kanalstr. 33
73728 Esslingen

Dr. Olivia Meyer-Streng | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpq.mpg.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Pflanzen gegen Staunässe schützen
17.10.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Erweiterung des Lichtwegs macht winzige Strukturen in Körperzellen sichtbar
17.10.2017 | Georg-August-Universität Göttingen

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Sicheres Bezahlen ohne Datenspur

Ob als Smartphone-App für die Fahrkarte im Nahverkehr, als Geldwertkarten für das Schwimmbad oder in Form einer Bonuskarte für den Supermarkt: Für viele gehören „elektronische Geldbörsen“ längst zum Alltag. Doch vielen Kunden ist nicht klar, dass sie mit der Nutzung dieser Angebote weitestgehend auf ihre Privatsphäre verzichten. Am Karlsruher Institut für Technologie (KIT) entsteht ein sicheres und anonymes System, das gleichzeitig Alltagstauglichkeit verspricht. Es wird nun auf der Konferenz ACM CCS 2017 in den USA vorgestellt.

Es ist vor allem das fehlende Problembewusstsein, das den Informatiker Andy Rupp von der Arbeitsgruppe „Kryptographie und Sicherheit“ am KIT immer wieder...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Topologische Isolatoren: Neuer Phasenübergang entdeckt

Physiker des HZB haben an BESSY II Materialien untersucht, die zu den topologischen Isolatoren gehören. Dabei entdeckten sie einen neuen Phasenübergang zwischen zwei unterschiedlichen topologischen Phasen. Eine dieser Phasen ist ferroelektrisch: das bedeutet, dass sich im Material spontan eine elektrische Polarisation ausbildet, die sich durch ein äußeres elektrisches Feld umschalten lässt. Dieses Ergebnis könnte neue Anwendungen wie das Schalten zwischen unterschiedlichen Leitfähigkeiten ermöglichen.

Topologische Isolatoren zeichnen sich dadurch aus, dass sie an ihren Oberflächen Strom sehr gut leiten, während sie im Innern Isolatoren sind. Zu dieser neuen...

Im Focus: Smarte Sensoren für effiziente Prozesse

Materialfehler im Endprodukt können in vielen Industriebereichen zu frühzeitigem Versagen führen und den sicheren Gebrauch der Erzeugnisse massiv beeinträchtigen. Eine Schlüsselrolle im Rahmen der Qualitätssicherung kommt daher intelligenten, zerstörungsfreien Sensorsystemen zu, die es erlauben, Bauteile schnell und kostengünstig zu prüfen, ohne das Material selbst zu beschädigen oder die Oberfläche zu verändern. Experten des Fraunhofer IZFP in Saarbrücken präsentieren vom 7. bis 10. November 2017 auf der Blechexpo in Stuttgart zwei Exponate, die eine schnelle, zuverlässige und automatisierte Materialcharakterisierung und Fehlerbestimmung ermöglichen (Halle 5, Stand 5306).

Bei Verwendung zeitaufwändiger zerstörender Prüfverfahren zieht die Qualitätsprüfung durch die Beschädigung oder Zerstörung der Produkte enorme Kosten nach...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Dezember 2017

17.10.2017 | Veranstaltungen

Intelligente Messmethoden für die Bauwerkssicherheit: Fachtagung „Messen im Bauwesen“ am 14.11.2017

17.10.2017 | Veranstaltungen

Meeresbiologe Mark E. Hay zu Gast bei den "Noblen Gesprächen" am Beutenberg Campus in Jena

16.10.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Sicheres Bezahlen ohne Datenspur

17.10.2017 | Informationstechnologie

Pflanzen gegen Staunässe schützen

17.10.2017 | Biowissenschaften Chemie

Den Trends der Umweltbranche auf der Spur

17.10.2017 | Ökologie Umwelt- Naturschutz