Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Schonende Cluster für Biomoleküle

06.04.2009
Wissenschaftler nutzen patentiertes Verfahren der "Transienten Matrix Desorption" erstmals erfolgreich für die Massenbestimmung komplexer Biomoleküle

Fortschritte in der biomedizinischen Forschung sind nicht denkbar ohne Fortschritte in der Identifizierung und Analyse der in lebenden Zellen enthaltenen Proteine.

Als Schlüsseltechnik hat sich hier die Massenspektrometrie herausgestellt. Sie setzt jedoch voraus, dass die Moleküle einzeln und in elektrisch geladener Form in der Gasphase vorliegen. Bei der dafür notwendigen Präparation können die empfindlichen Makromoleküle leicht zerstört werden.

Eine neue, sehr schonende Methode haben nun Forscher am MPQ in Zusammenarbeit mit der Hochschule Esslingen entwickelt. Bereits vor einigen Jahren ließen die MPQ-Forscher ein Verfahren patentieren, bei dem Strahlen aus neutralen Molekülclustern Atome und Moleküle von beliebigen Oberflächen abtragen. Wie Dr. Christoph Gebhardt, Dr. Anna Tomsic, Dr. Hartmut Schröder, Prof. Michael Dürr und Prof. Karl L. Kompa (emeritierter Direktor am MPQ und Leiter der Gruppe "Laserchemie") in der Zeitschrift Angewandte Chemie (10.1002/ange.200804431 DOI ) berichten, ist es ihnen nun erstmals gelungen, dieses Verfahren der Desorption mittels transienter Matrix erfolgreich auf große Biomoleküle wie z.B. Insulin anzuwenden.

Das Verfahren zeichnet sich dabei u. a. durch die sehr einfache Probenpräparation sowie den sehr schonenden Ablöseprozess aus, bei dem auch große Moleküle vollständig intakt bleiben, aus.

Die Gruppe "Laserchemie" von Emeritus Prof. Karl-Ludwig Kompa arbeitet schon lange mit Clustern aus polaren Molekülen (d.h. die Moleküle haben zwei Ladungsschwerpunkte, sind aber nach außen neutral), die sich bilden, wenn das Ausgangsgas ins Vakuum expandiert. Diese schneeballähnlichen Gebilde bestehen aus 1000 bis 10000 Einzelmolekülen, was einem Durchmesser von etwa 10 Nanometern entspricht. Der Zusammenhalt der Moleküle im Cluster ist allerdings nur schwach. Getrieben durch einen Gasjet aus Helium erreichen sie die zu untersuchende Oberfläche mit etwa dreifacher Schallgeschwindigkeit.
Im vorliegenden Experiment schießen die Forscher solche Cluster aus Schwefeldioxidmolekülen auf Festkörperoberflächen, auf die sie zuvor gelöste Biomoleküle als Film aufgebracht hatten. Aufgrund seines polaren Charakters kann ein Cluster während dieses Stoßes ein Biomolekül, das sich aus dem Lösungsmittel ein positiv geladenes Wasserstoffatom geschnappt hat, mit sich reißen (siehe auch Abbildung). Für einen Zeitraum von nur 10 Pikosekunden - das ist ein Hundertstel von einem Millionstel von einer Sekunde - heizt sich der Cluster im Stoß mit der Oberfläche auf. Danach zerplatzt der heiße Cluster, während das abgelöste Biomolekül - einzeln und elektrisch geladen - in einem herkömmlichen Massenspektrometer analysiert werden kann. "Wir können uns die Cluster als die kleinste denkbare Einheit vorstellen, in denen chemische Reaktionen wie in einem mikroskopischen Reagenzglas ablaufen können. Der Stoß mit der Oberfläche zerstört das Reagenzglas, und wir können die Reaktionsprodukte, sofern sie elektrisch geladen sind, bequem analysieren. Was wir hier machen, ist praktisch Nanochemie", erklärt Dr. Hartmut Schröder.

Auf diese Weise äußerst schonend präpariert, analysierten die Wissenschaftler eine Reihe von Biomolekülen wie Bombesin, Angiotensin oder Insulin mit Hilfe der Flugzeit-Massenspektrometrie. Bei diesem Verfahren wird die Masse aus der Zeit abgeleitet, die das geladene Molekül nach Beschleunigung in einem elektrostatischen Feld zum Durchfliegen einer gegebenen Wegstrecke benötigt. Die Messungen zeigten, dass auf diese Weise nicht nur die einzelnen Biomoleküle identifiziert werden können, sondern vor allem auch, dass die desorbierten Biomoleküle den heftigen Cluster-Oberflächenstoß völlig unbeschadet überstehen. "Dabei zeichnet sich die Methode schon heute durch eine sehr hohe Empfindlichkeit im Femtomolbereich aus", betont Prof. Karl-Ludwig Kompa. "Es gilt nun, diese Methode vom Forschungsstadium in Richtung Anwendung weiterzuentwickeln", ergänzt Prof. Michael Dürr. "Dafür müssen wir sowohl die der Desorption zugrunde liegenden Prozesse besser verstehen, als auch die technischen Voraussetzungen für eine weitere Steigerung der Nachweisempfindlichkeit schaffen." Das hier beschriebene Verfahren soll deshalb im Rahmen der bestehenden Kooperation zwischen dem MPQ und der Hochschule Esslingen weiter erforscht werden. [OM]

Originalveröffentlichung:
Christoph R. Gebhardt, Anna Tomsic, Hartmut Schröder, Michael Dürr, Karl L. Kompa
"Matrix-free Formation of Gas-Phase Biomolecular Ions by Soft Cluster-Induced Desorption"

Angewandte Chemie Int. Ed., im Druck, DOI: 10.1002/anie.200804431

Kontakt:
Prof. Dr. Karl-Ludwig Kompa (karl-ludwig.kompa@mpq.mpg.de)
Tel.: 089 32905 703, Fax: 089 32905 313
Dr. Hartmut Schröder (hartmut.schroeder@mpq.mpg.de)
Tel.: 089 32905 231, Fax: 089 32905 313
Max-Planck-Institut für Quantenoptik
Hans-Kopfermann-Straße 1
85748 Garching
Prof. Dr. Michael Dürr (michael.duerr@hs-esslingen.de)
Tel.: 0711 3973554, Fax: 0711 3973502
Hochschule Esslingen
Kanalstr. 33
73728 Esslingen

Dr. Olivia Meyer-Streng | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpq.mpg.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Symbiose-Bakterien: Vom blinden Passagier zum Leibwächter des Wollkäfers
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Forschungsteam entdeckt Mechanismus zur Aktivierung der Reproduktion bei Pflanzen
28.04.2017 | Universität Hamburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: TU Chemnitz präsentiert weltweit einzigartige Pilotanlage für nachhaltigen Leichtbau

Wickelprinzip umgekehrt: Orbitalwickeltechnologie soll neue Maßstäbe in der großserientauglichen Fertigung komplexer Strukturbauteile setzen

Mitarbeiterinnen und Mitarbeiter des Bundesexzellenzclusters „Technologiefusion für multifunktionale Leichtbaustrukturen" (MERGE) und des Instituts für...

Im Focus: Smart Wireless Solutions: EU-Großprojekt „DEWI“ liefert Innovationen für eine drahtlose Zukunft

58 europäische Industrie- und Forschungspartner aus 11 Ländern forschten unter der Leitung des VIRTUAL VEHICLE drei Jahre lang, um Europas führende Position im Bereich Embedded Systems und dem Internet of Things zu stärken. Die Ergebnisse von DEWI (Dependable Embedded Wireless Infrastructure) wurden heute in Graz präsentiert. Zu sehen war eine Fülle verschiedenster Anwendungen drahtloser Sensornetzwerke und drahtloser Kommunikation – von einer Forschungsrakete über Demonstratoren zur Gebäude-, Fahrzeug- oder Eisenbahntechnik bis hin zu einem voll vernetzten LKW.

Was vor wenigen Jahren noch nach Science-Fiction geklungen hätte, ist in seinem Ansatz bereits Wirklichkeit und wird in Zukunft selbstverständlicher Teil...

Im Focus: Weltweit einzigartiger Windkanal im Leipziger Wolkenlabor hat Betrieb aufgenommen

Am Leibniz-Institut für Troposphärenforschung (TROPOS) ist am Dienstag eine weltweit einzigartige Anlage in Betrieb genommen worden, mit der die Einflüsse von Turbulenzen auf Wolkenprozesse unter präzise einstellbaren Versuchsbedingungen untersucht werden können. Der neue Windkanal ist Teil des Leipziger Wolkenlabors, in dem seit 2006 verschiedenste Wolkenprozesse simuliert werden. Unter Laborbedingungen wurden z.B. das Entstehen und Gefrieren von Wolken nachgestellt. Wie stark Luftverwirbelungen diese Prozesse beeinflussen, konnte bisher noch nicht untersucht werden. Deshalb entstand in den letzten Jahren eine ergänzende Anlage für rund eine Million Euro.

Die von dieser Anlage zu erwarteten neuen Erkenntnisse sind wichtig für das Verständnis von Wetter und Klima, wie etwa die Bildung von Niederschlag und die...

Im Focus: Nanoskopie auf dem Chip: Mikroskopie in HD-Qualität

Neue Erfindung der Universitäten Bielefeld und Tromsø (Norwegen)

Physiker der Universität Bielefeld und der norwegischen Universität Tromsø haben einen Chip entwickelt, der super-auflösende Lichtmikroskopie, auch...

Im Focus: Löschbare Tinte für den 3-D-Druck

Im 3-D-Druckverfahren durch Direktes Laserschreiben können Mikrometer-große Strukturen mit genau definierten Eigenschaften geschrieben werden. Forscher des Karlsruher Institus für Technologie (KIT) haben ein Verfahren entwickelt, durch das sich die 3-D-Tinte für die Drucker wieder ‚wegwischen‘ lässt. Die bis zu hundert Nanometer kleinen Strukturen lassen sich dadurch wiederholt auflösen und neu schreiben - ein Nanometer entspricht einem millionstel Millimeter. Die Entwicklung eröffnet der 3-D-Fertigungstechnik vielfältige neue Anwendungen, zum Beispiel in der Biologie oder Materialentwicklung.

Beim Direkten Laserschreiben erzeugt ein computergesteuerter, fokussierter Laserstrahl in einem Fotolack wie ein Stift die Struktur. „Eine Tinte zu entwickeln,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Internationaler Tag der Immunologie - 29. April 2017

28.04.2017 | Veranstaltungen

Kampf gegen multiresistente Tuberkulose – InfectoGnostics trifft MYCO-NET²-Partner in Peru

28.04.2017 | Veranstaltungen

123. Internistenkongress: Traumata, Sprachbarrieren, Infektionen und Bürokratie – Herausforderungen

27.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Über zwei Millionen für bessere Bordnetze

28.04.2017 | Förderungen Preise

Symbiose-Bakterien: Vom blinden Passagier zum Leibwächter des Wollkäfers

28.04.2017 | Biowissenschaften Chemie

Wie Pflanzen ihre Zucker leitenden Gewebe bilden

28.04.2017 | Biowissenschaften Chemie