Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Schöner Wohnen für Stammzellen

24.06.2013
Wie werden Stammzellen von ihrer Umgebung beeinflusst?

Um dies besser zu verstehen, haben Wissenschaftler vom Leibniz-Institut für Polymerforschung Dresden, der Medizinischen Fakultät der TU Dresden und dem DFG-Forschungszentrum für Regenerative Therapien das Mikromilieu von Stammzellen im Labor nachgebildet.

Sie haben dabei eine Matrixstruktur entwickelt, in der menschliche Blutstammzellen dreimal schneller wachsen als unter bisher angewandten Bedingungen. Die Ergebnisse ihrer Studie wurden am 16. Juni in der Fachzeitschrift Nature Methods publiziert (DOI: 10.1038/nmeth.2523).

In der Natur sind Stammzellen in eine sogenannte extrazelluläre Matrix aus dreidimensional miteinander verknüpften Biomakromolekülen eingebettet, die als Leitstruktur zur Anhaftung und Migration der Zellen im Gewebe sowie zur lokalisierten Bereitstellung löslicher Botenstoffe dient. Derartige Matrixstrukturen in definierter Weise nachzuformen - ein vorrangiges Ziel der aktuellen Biomaterialforschung - erwies sich bisher als schwierig.

Durch das Dresdner Team wurde nun eine Methode entwickelt, mit der die von Zellkulturen produzierte extrazelluläre Matrix auf Oberflächen verankert werden kann. Dabei wird die Tatsache genutzt, dass Zellen auch im Labor unter geeigneten Kulturbedingungen charakteristische Strukturen aus extrazellulärer Matrix absondern. Mit Hilfe einer wenige Nanometer dünnen, aber reaktiven Polymerschicht werden diese Strukturen auf dem Zellkulturträger chemisch angebunden und dadurch zurückgehalten, wenn anschließend die Zellen abgelöst werden. Auf diese Weise können Zellkulturträger hergestellt werden, die biomolekulare und physikalische Signale des natürlichen Mikromilieus der Zellen im Labor originalgetreu nachvollziehen lassen.

Konkret wurde dieses Prinzip für die Kultur von Blutstammzellen aus dem Knochenmark des Menschen angewandt, die bei der Behandlung von Leukämie transplantiert werden. Dazu wurden mesenchymale Stammzellen, ein im Knochenmark vorkommender Stammzelltyp, genutzt. Die Eigenschaften der von diesen Zellen in Kultur erzeugten extrazellulären Matrix wurden genau untersucht, und es wurde nachgewiesen, dass durch die Kulturbedingungen die Zusammensetzung und Struktur der Matrix verändert werden kann.

Anschließend wurden menschliche Blutstammzellen für mehrere Tage im Labor in Kontakt mit verschiedenen Varianten der fest verankerten, Knochenmark-typischen extrazellulären Matrix gebracht. Verglichen mit bisher dafür angewandten Kulturbedingungen konnten die Zellen dadurch etwa dreimal schneller vermehrt werden – ohne Einschränkung ihrer Funktionalität, wie durch Transplantation im Tiermodell bewiesen wurde.

Die entwickelte Methodik bietet vielfältige Möglichkeiten zur Entschlüsselung und Modulation von Signalen, die Stammzellen aus verschiedenen Geweben durch ihre Mikroumgebung steuern lässt und kann so für die Erkundung von neuen zellbasierten Therapien genutzt werden.

Publikation
Tightly anchored tissue-mimetic matrices as instructive stem cell microenvironments
Marina K. Prewitz, Philipp F. Seib, Malte von Bonin, Jens Friedrichs, Aline Stißel, Christian Niehage, Karin Müller, Konstantinos Anastassiadis, Claudia Waskow, Bernd Hoflack, Martin Bornhäuser, Carsten Werner, Nature Methods, http://dx.doi.org/10.1038/nmeth.2523).

Beteiligte Institutionen/Förderung
Leibniz-Institut für Polymerforschung Dresden e.V., Max-Bergmann-Zentrum für Biomaterialien Dresden, Medizinische Klinik I an der Medizinischen Fakultät Carl Gustav Carus der TU Dresden, DFG-Forschungszentrum für Regenerative Therapien Dresden – Exzellenzcluster an der TU Dresden und Biotechnologisches Zentrum der TU Dresden; finanziert durch die Deutsche Forschungsgemeinschaft im Rahmen des Sonderforschungs¬bereiches 655 ‘From Cells into Tissues’.

Kontakt
Prof. Dr. Carsten Werner
Leibniz-Institut für Polymerforschung Dresden e.V., Max-Bergmann-Zentrum für Biomaterialien & Technische Universität Dresden, DFG-Forschungszentrum für Regenerative Therapien – Exzellenzcluster an der TU Dresden
Tel.: + 49 351 4658 531 Fax: + 49 351 4658 533
carsten.werner@tu-dresden.de

Kerstin Wustrack | idw
Weitere Informationen:
http://www.tu-dresden.de
http://www.ipfdd.de/Institute-Biofunctional-Polymer-Material.2378.0.html

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Forscher entschlüsseln zentrales Reaktionsprinzip von Metalloenzymen
16.01.2018 | Rheinisch-Westfälische Technische Hochschule Aachen

nachricht Leuchtende Echsen - Knochenbasierte Fluoreszenz bei Chamäleons
15.01.2018 | Staatliche Naturwissenschaftliche Sammlungen Bayerns

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Forscher entschlüsseln zentrales Reaktionsprinzip von Metalloenzymen

Sogenannte vorverspannte Zustände beschleunigen auch photochemische Reaktionen

Was ermöglicht den schnellen Transfer von Elektronen, beispielsweise in der Photosynthese? Ein interdisziplinäres Forscherteam hat die Funktionsweise wichtiger...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: Erstmalige präzise Messung der effektiven Ladung eines einzelnen Moleküls

Zum ersten Mal ist es Forschenden gelungen, die effektive elektrische Ladung eines einzelnen Moleküls in Lösung präzise zu messen. Dieser fundamentale Fortschritt einer vom SNF unterstützten Professorin könnte den Weg für die Entwicklung neuartiger medizinischer Diagnosegeräte ebnen.

Die elektrische Ladung ist eine der Kerneigenschaften, mit denen Moleküle miteinander in Wechselwirkung treten. Das Leben selber wäre ohne diese Eigenschaft...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Wie Metallstrukturen effektiv helfen, Knochen zu heilen

Forscher schaffen neue Generation von Knochenimplantaten

Wissenschaftler am Julius Wolff Institut, dem Berlin-Brandenburger Centrum für Regenerative Therapien und dem Centrum für Muskuloskeletale Chirurgie der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

2. Hannoverscher Datenschutztag: Neuer Datenschutz im Mai – Viele Unternehmen nicht vorbereitet!

16.01.2018 | Veranstaltungen

Fachtagung analytica conference 2018

15.01.2018 | Veranstaltungen

Tagung „Elektronikkühlung - Wärmemanagement“ vom 06. - 07.03.2018 in Essen

11.01.2018 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rittal mit neuem Onlineauftritt - Lösungskompetenz für alle IT-Szenarien

16.01.2018 | Unternehmensmeldung

Die „dunkle“ Seite der Spin-Physik

16.01.2018 | Physik Astronomie

Wetteranomalien verstärken Meereisschwund

16.01.2018 | Geowissenschaften