Schnellster Grafikkarten-Supercomputer Europas rechnet in Göttingen

Wissenschaftler können so 3D-Strukturen biologischer Makromoleküle aus elektronenmikroskopischen Bildern bis zu 100-mal schneller berechnen. Um diese Geschwindigkeit weiter zu steigern, sind am Institut 340 dieser schnellen Grafikkarten in einem Cluster zusammengefasst.

Die theoretische Gesamtrechenleistung des Clusters beträgt mehr als 200 Billionen Rechenoperationen pro Sekunde. Diese Geschwindigkeit wird weltweit nur noch von wenigen Großrechenanlagen übertroffen.

Mit dieser theoretischen Rechenleistung käme der neue Göttinger Computer-Cluster unter die Top 20 der derzeit weltweit schnellsten Supercomputer. Im Vergleich zu ähnlich schnellen CPU-basierten Supercomputern verbraucht er dabei nur einen Bruchteil an Energie, Platz und Anschaffungskosten. Allein die Gebäudekosten CPU-basierter Supercomputer verschlingen normalerweise ein Vielfaches der gesamten Investitionen des Göttinger Grafikkarten-Clusters.

„Zum Einsatz kommen im neuen Cluster sowohl fertige Lösungen des Grafikkartenherstellers NVIDIA als auch eine eigene Konstruktion, die in den Werkstätten am Max-Planck-Institut für biophysikalische Chemie mit uns zusammen entwickelt wurde“, sagt Holger Stark, Leiter der Forschungsgruppe Dreidimensionale Kryo-Elektronenmikroskopie. Die am Institut entwickelte Lösung vereint NVIDIA- Grafikkarten in konventionellen Computer-Gehäusen mit großer Rechendichte.

„Uns interessieren besonders Makromoleküle, die in menschlichen Zellen an allen wichtigen Schritten der Protein-Herstellung beteiligt sind“, erklärt Strukturbiologe Stark. „Unser Ziel ist es, hochaufgelöste Einblicke in die Strukturen und dynamischen Abläufe dieser lebenswichtigen zellulären 'Nanomaschinen' zu erhalten“. Dafür werden dreidimensionale Strukturen aus mehreren Millionen elektronenmikroskopischen Projektionsbildern einzelner Moleküle berechnet.

Mit dem neuen Computer-Cluster können nicht nur größere Datenmengen analysiert werden. Auch aufwändigere Bildverarbeitungsverfahren werden von der Arbeitsgruppe entwickelt und eingesetzt, um die maximale Auflösung zu verbessern. „Detaillierte Einblicke in die dreidimensionalen Strukturen dieser dynamischen zellulären 'Nanomaschinen' sind zwingend notwendig, damit wir Fehlfunktionen bei der Protein-Herstellung auf molekularer Ebene besser verstehen können, die die Ursache für eine Vielzahl von Krankheiten darstellen“, so Stark.

Ansprechpartner:
Prof. Dr. Holger Stark,
Forschungsgruppe Dreidimensionale Kryo-Elektronenmikroskopie
Max-Planck-Institut für biophysikalische Chemie, Göttingen
Tel.: 0551 / 201-1305
Email: holger.stark@mpibpc.mpg.de
Dr. Carmen Rotte,
Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für biophysikalische Chemie, Göttingen
Tel.: 0551 / 201-1304
E-Mail: crotte@gwdg.de

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Nanofasern-befreien Wasser von gefährlichen Farbstoffen

Farbstoffe, wie sie zum Beispiel in der Textilindustrie verwendet werden, sind ein großes Umweltproblem. An der TU Wien entwickelte man nun effiziente Filter dafür – mit Hilfe von Zellulose-Abfällen. Abfall…

Entscheidender Durchbruch für die Batterieproduktion

Energie speichern und nutzen mit innovativen Schwefelkathoden. HU-Forschungsteam entwickelt Grundlagen für nachhaltige Batterietechnologie. Elektromobilität und portable elektronische Geräte wie Laptop und Handy sind ohne die Verwendung von Lithium-Ionen-Batterien undenkbar. Das…

Wenn Immunzellen den Körper bewegungsunfähig machen

Weltweit erste Therapie der systemischen Sklerose mit einer onkologischen Immuntherapie am LMU Klinikum München. Es ist ein durchaus spektakulärer Fall: Nach einem mehrwöchigen Behandlungszyklus mit einem immuntherapeutischen Krebsmedikament hat ein…

Partner & Förderer