Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Schneller zum Porträt des Proteins

15.12.2014

Alle Lebewesen, vom Bakterium bis zum Menschen, sind für die Verrichtung ihrer vitalen Funktionen auf Proteine angewiesen. Wie die Proteine ihre Aufgaben erfüllen, hängt von ihrer Struktur ab. Forschende des Paul Scherrer Instituts haben nun eine neuartige Methode entwickelt, um die Kristallstruktur von Proteinen mithilfe von Röntgenlicht schneller herauszufinden. Dies könnte in Zukunft auch die Entwicklung neuer Medikamente beschleunigen. Die Studie wird am 15. Dezember im Fachmagazin Nature Methods veröffentlicht.

Bei der Abbildung eines Objekts spielt die Wellenlänge des Lichts eine entscheidende Rolle. Es stellt sich heraus, dass man grundsätzlich nur Details auflösen kann, deren Dimensionen ungefähr so gross sind wie die Wellenlänge des verwendeten Lichts. Will man die Struktur einer Substanz, etwa eines Proteins, auf atomarer Skala auflösen, braucht man Licht mit sehr kurzer Wellenlänge: also Röntgenlicht.


Die PSI-Forscher Meitian Wang, Tobias Weinert und Vincent Olieric an ihrem Arbeitsplatz in der Synchrotronlichtquelle Schweiz SLS. Photo: Paul Scherrer Institut/Mahir Dzambegovic.

Von der DNA-Doppelhelix bis heute

Spätestens seitdem Anfang der 1950er Jahre mit Hilfe von Röntgenlicht die Aufschlüsselung der berühmten Doppelhelix-Struktur eines DNA-Moleküls gelang, steht die Tauglichkeit dieses Werkzeugs ausser Frage. Die überwiegende Mehrheit der heute bekannten Proteinstrukturen sind mithilfe der Röntgenkristallographie bestimmt worden.

Dabei wird Röntgenlicht, wenn es auf die Atome des Proteins trifft, auf eine dem Protein eigene Art gebeugt. Aus dem Beugungsmuster, das von den Detektoren hinter der Probe detektiert wird, lässt sich die Kristallstruktur des Proteins berechnen. Besonders leistungsstark ist die Proteinkristallographie dank der hohen Qualität des Röntgenlichts, das an Synchrotronlichtquellen erzeugt wird. Zu den weltbesten Synchrotronanlagen zählt die Synchrotronlichtquelle Schweiz SLS des PSI, an der die neue Technik entwickelt und getestet worden ist.

Die Technik bewährt sich

Die PSI-Forschenden verbessern mit ihrer jüngsten Arbeit eine als „native SAD" (single-wavelength anomalous diffraction) bekannte Methode, die Anfang der 1980er Jahre zum ersten Mal angewendet wurde. Bevor man die Struktur von Proteinen mit anderen weiter verbreiteten Techniken bestimmen kann, müssen diese in der Regel aufwändig im Labor aufbereitet werden.

Die Aufbereitung besteht darin, schwere Atome in die Proteinstruktur einzubauen, die das Beugungssignal verstärken. Die native-SAD-Methode nutzt die in den Proteinen natürlich vorkommenden Schwefelatome sowie andere leichtere Atome zur Strukturbestimmung und kann daher auf den komplizierten und nicht immer machbaren Einbau fremder Elemente in das Protein verzichten. Bisher war jedoch ein Nachteil der Methode, dass damit nur die Strukturen von sehr kleinen Proteinen bestimmt werden konnten. Somit war die Methode nur in Einzelfällen anwendbar. Mit der weiter entwickelten Methode können nun 90 Prozent aller Proteinstrukturen aufgeklärt werden.

Wichtig für den Erfolg war die hohe Empfindlichkeit der verwendeten PILATUS-Detektoren der Firma Dectris, eines Spin-Offs des PSI. „Diese Detektoren können selbst bei niedriger Intensität des Röntgenlichts genügend starke, rauscharme Signale aufzeichnen. Dadurch kann man die Proteinstruktur mit einer relativ kleinen Dosis an Röntgenstrahlung bestimmen“, erläutert PSI-Wissenschaftler Vincent Olieric. Eine hohe Strahlungsdosis ist bei konventionellen Techniken oft notwendig, um überhaupt ein Bild des Proteins zu bekommen. Die hohe Strahlungsdosis kann die Proteine in manchen Fällen jedoch so stark schädigen, dass ihre Struktur verändert wird.

Um genügend Daten bei niedriger Strahlungsdosis sammeln zu können und auch um die notwendige Verbesserung in der Genauigkeit der Messungen zu erzielen, griffen die Forschenden zu einem weiteren Trick: Sie rotierten die Probe nicht nur wie üblich um die Achse des Röntgenstrahls, sondern auch um die zwei Achsen senkrecht dazu. Dazu machten sie sich das am PSI entwickelte Goniometer PRIGo zunutze, das die Rotationen mit extremer Genauigkeit durchführt. Dazu musste das Goniometer so angepasst und verkleinert werden, dass es im engen Raum um die Probe herum nirgends anstösst.

Von der Nischenanwendung zum neuen Standard

„Wir haben mit unserer Technik innerhalb von 30 Monaten über 20 Proteinstrukturen bestimmen können. In den letzten 20 Jahren hat man mit der nativen SAD-Technik nur 100 Strukturen aufgeklärt. Das zeigt, wie unsere Methode den Gesamtprozess beschleunigen kann“, sagt Tobias Weinert, Erstautor der Studie. Zu den Proteinstrukturen, die die PSI-Forschenden mit ihrer neuen Technik geknackt haben, zählt jene des Proteins T2R-TTL, eines sogenannten Tubulin-Moleküls, das im Skelett vieler Zellen vorkommt und diese mechanisch stärkt. „Das ist die grösste und somit komplexeste bisher mit der nativen SAD-Technik aufgeklärte Proteinstruktur. Vor unserer Arbeit hielten es fast alle für unmöglich, diese Proteinstruktur in ihrem ursprünglichen Zustand mit nativer SAD zu bestimmen.“

Da die meisten Proteine kleiner und weniger komplex sind als Tubulin, heisst das, dass man nun die meisten Strukturen mit dieser verbesserten Methode lösen kann womit sie zum neuen Standard avanciert und Strukturbestimmungen von vielen Proteinen in Zukunft schneller, einfacher und kosteneffizienter macht.

Text: Paul Scherrer Institut/Leonid Leiva

Über das PSI

Das Paul Scherrer Institut PSI entwickelt, baut und betreibt grosse und komplexe Forschungsanlagen und stellt sie der nationalen und internationalen Forschungsgemeinde zur Verfügung. Eigene Forschungsschwerpunkte sind Materie und Material, Energie und Umwelt sowie Mensch und Gesundheit. Die Ausbildung von jungen Menschen ist ein zentrales Anliegen des PSI. Deshalb sind etwa ein Viertel unserer Mitarbeitenden Postdoktorierende, Doktorierende oder Lernende. Insgesamt beschäftigt das PSI 1900 Mitarbeitende, das damit das grösste Forschungsinstitut der Schweiz ist. Das Jahresbudget beträgt rund CHF 350 Mio.

Abbildungen sind unter http://psi.ch/UvRA  zum Download verfügbar


Kontakt:
Dr. Meitian Wang,Leiter der Gruppe Kristallographie von Makromolekülen, Labor für Makromoleküle und Bioimaging,
Paul Scherrer Institut, 5232 Villigen PSI, Schweiz
Telefon: +41 056 310 4175, E-Mail: meitian.wang@psi.ch

Originalveröffentlichung:
Fast native-SAD phasing for routine macromolecular structure determination
Tobias Weinert et al.,
Nature Methods 15 Dezember 2014, Advanced Online Publication
DOI: 10.1038/nmeth.3211

Weiterführende Informationen:
Gruppe Kristallographie von Makromolekülen am PSI:
www.psi.ch/macromolecular-crystallography/sls-mx-group 


Paul Scherrer Institut
Dagmar Baroke, M.A.
Abteilungsleiterin Kommunikation
CH-5232 Villigen PSI
Tel: +41 56 310 29 16
Fax: +41 56 310 27 17
dagmar.baroke@psi.ch
http://www.psi.ch 
https://twitter.com/psich_de


Weitere Informationen:

http://www.psi.ch

Leonid Leiva | PSI

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Verbesserte Kohlendioxid-Fixierung dank Mikrokompartiment
25.09.2017 | Max-Planck-Institut für Biochemie

nachricht Regenbogenfarben enthüllen Werdegang von Zellen
25.09.2017 | Technische Universität Dresden

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: Effizientere und präzisere Kontakte dank Roboter-Kollaboration

Auf der diesjährigen productronica in München stellt das Fraunhofer-Institut für Lasertechnik ILT das Laser-Based Tape-Automated Bonding, kurz LaserTAB, vor: Die Aachener Experten zeigen, wie sich dank neuer Optik und Roboter-Unterstützung Batteriezellen und Leistungselektronik effizienter und präziser als bisher lasermikroschweißen lassen.

Auf eine geschickte Kombination von Roboter-Einsatz, Laserscanner mit selbstentwickelter neuer Optik und Prozessüberwachung setzt das Fraunhofer ILT aus Aachen.

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Posterblitz und neue Planeten

25.09.2017 | Veranstaltungen

Hochschule Karlsruhe richtet internationale Konferenz mit Schwerpunkt Informatik aus

25.09.2017 | Veranstaltungen

Junge Physiologen Tagen in Jena

25.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Verbesserte Kohlendioxid-Fixierung dank Mikrokompartiment

25.09.2017 | Biowissenschaften Chemie

Internationales Forscherteam entdeckt kohärenten Lichtverstärkungsprozess in Laser-angeregtem Glas

25.09.2017 | Physik Astronomie

LaserTAB: Effizientere und präzisere Kontakte dank Roboter-Kollaboration

25.09.2017 | Messenachrichten