Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Schneller zum Porträt des Proteins

15.12.2014

Alle Lebewesen, vom Bakterium bis zum Menschen, sind für die Verrichtung ihrer vitalen Funktionen auf Proteine angewiesen. Wie die Proteine ihre Aufgaben erfüllen, hängt von ihrer Struktur ab. Forschende des Paul Scherrer Instituts haben nun eine neuartige Methode entwickelt, um die Kristallstruktur von Proteinen mithilfe von Röntgenlicht schneller herauszufinden. Dies könnte in Zukunft auch die Entwicklung neuer Medikamente beschleunigen. Die Studie wird am 15. Dezember im Fachmagazin Nature Methods veröffentlicht.

Bei der Abbildung eines Objekts spielt die Wellenlänge des Lichts eine entscheidende Rolle. Es stellt sich heraus, dass man grundsätzlich nur Details auflösen kann, deren Dimensionen ungefähr so gross sind wie die Wellenlänge des verwendeten Lichts. Will man die Struktur einer Substanz, etwa eines Proteins, auf atomarer Skala auflösen, braucht man Licht mit sehr kurzer Wellenlänge: also Röntgenlicht.


Die PSI-Forscher Meitian Wang, Tobias Weinert und Vincent Olieric an ihrem Arbeitsplatz in der Synchrotronlichtquelle Schweiz SLS. Photo: Paul Scherrer Institut/Mahir Dzambegovic.

Von der DNA-Doppelhelix bis heute

Spätestens seitdem Anfang der 1950er Jahre mit Hilfe von Röntgenlicht die Aufschlüsselung der berühmten Doppelhelix-Struktur eines DNA-Moleküls gelang, steht die Tauglichkeit dieses Werkzeugs ausser Frage. Die überwiegende Mehrheit der heute bekannten Proteinstrukturen sind mithilfe der Röntgenkristallographie bestimmt worden.

Dabei wird Röntgenlicht, wenn es auf die Atome des Proteins trifft, auf eine dem Protein eigene Art gebeugt. Aus dem Beugungsmuster, das von den Detektoren hinter der Probe detektiert wird, lässt sich die Kristallstruktur des Proteins berechnen. Besonders leistungsstark ist die Proteinkristallographie dank der hohen Qualität des Röntgenlichts, das an Synchrotronlichtquellen erzeugt wird. Zu den weltbesten Synchrotronanlagen zählt die Synchrotronlichtquelle Schweiz SLS des PSI, an der die neue Technik entwickelt und getestet worden ist.

Die Technik bewährt sich

Die PSI-Forschenden verbessern mit ihrer jüngsten Arbeit eine als „native SAD" (single-wavelength anomalous diffraction) bekannte Methode, die Anfang der 1980er Jahre zum ersten Mal angewendet wurde. Bevor man die Struktur von Proteinen mit anderen weiter verbreiteten Techniken bestimmen kann, müssen diese in der Regel aufwändig im Labor aufbereitet werden.

Die Aufbereitung besteht darin, schwere Atome in die Proteinstruktur einzubauen, die das Beugungssignal verstärken. Die native-SAD-Methode nutzt die in den Proteinen natürlich vorkommenden Schwefelatome sowie andere leichtere Atome zur Strukturbestimmung und kann daher auf den komplizierten und nicht immer machbaren Einbau fremder Elemente in das Protein verzichten. Bisher war jedoch ein Nachteil der Methode, dass damit nur die Strukturen von sehr kleinen Proteinen bestimmt werden konnten. Somit war die Methode nur in Einzelfällen anwendbar. Mit der weiter entwickelten Methode können nun 90 Prozent aller Proteinstrukturen aufgeklärt werden.

Wichtig für den Erfolg war die hohe Empfindlichkeit der verwendeten PILATUS-Detektoren der Firma Dectris, eines Spin-Offs des PSI. „Diese Detektoren können selbst bei niedriger Intensität des Röntgenlichts genügend starke, rauscharme Signale aufzeichnen. Dadurch kann man die Proteinstruktur mit einer relativ kleinen Dosis an Röntgenstrahlung bestimmen“, erläutert PSI-Wissenschaftler Vincent Olieric. Eine hohe Strahlungsdosis ist bei konventionellen Techniken oft notwendig, um überhaupt ein Bild des Proteins zu bekommen. Die hohe Strahlungsdosis kann die Proteine in manchen Fällen jedoch so stark schädigen, dass ihre Struktur verändert wird.

Um genügend Daten bei niedriger Strahlungsdosis sammeln zu können und auch um die notwendige Verbesserung in der Genauigkeit der Messungen zu erzielen, griffen die Forschenden zu einem weiteren Trick: Sie rotierten die Probe nicht nur wie üblich um die Achse des Röntgenstrahls, sondern auch um die zwei Achsen senkrecht dazu. Dazu machten sie sich das am PSI entwickelte Goniometer PRIGo zunutze, das die Rotationen mit extremer Genauigkeit durchführt. Dazu musste das Goniometer so angepasst und verkleinert werden, dass es im engen Raum um die Probe herum nirgends anstösst.

Von der Nischenanwendung zum neuen Standard

„Wir haben mit unserer Technik innerhalb von 30 Monaten über 20 Proteinstrukturen bestimmen können. In den letzten 20 Jahren hat man mit der nativen SAD-Technik nur 100 Strukturen aufgeklärt. Das zeigt, wie unsere Methode den Gesamtprozess beschleunigen kann“, sagt Tobias Weinert, Erstautor der Studie. Zu den Proteinstrukturen, die die PSI-Forschenden mit ihrer neuen Technik geknackt haben, zählt jene des Proteins T2R-TTL, eines sogenannten Tubulin-Moleküls, das im Skelett vieler Zellen vorkommt und diese mechanisch stärkt. „Das ist die grösste und somit komplexeste bisher mit der nativen SAD-Technik aufgeklärte Proteinstruktur. Vor unserer Arbeit hielten es fast alle für unmöglich, diese Proteinstruktur in ihrem ursprünglichen Zustand mit nativer SAD zu bestimmen.“

Da die meisten Proteine kleiner und weniger komplex sind als Tubulin, heisst das, dass man nun die meisten Strukturen mit dieser verbesserten Methode lösen kann womit sie zum neuen Standard avanciert und Strukturbestimmungen von vielen Proteinen in Zukunft schneller, einfacher und kosteneffizienter macht.

Text: Paul Scherrer Institut/Leonid Leiva

Über das PSI

Das Paul Scherrer Institut PSI entwickelt, baut und betreibt grosse und komplexe Forschungsanlagen und stellt sie der nationalen und internationalen Forschungsgemeinde zur Verfügung. Eigene Forschungsschwerpunkte sind Materie und Material, Energie und Umwelt sowie Mensch und Gesundheit. Die Ausbildung von jungen Menschen ist ein zentrales Anliegen des PSI. Deshalb sind etwa ein Viertel unserer Mitarbeitenden Postdoktorierende, Doktorierende oder Lernende. Insgesamt beschäftigt das PSI 1900 Mitarbeitende, das damit das grösste Forschungsinstitut der Schweiz ist. Das Jahresbudget beträgt rund CHF 350 Mio.

Abbildungen sind unter http://psi.ch/UvRA  zum Download verfügbar


Kontakt:
Dr. Meitian Wang,Leiter der Gruppe Kristallographie von Makromolekülen, Labor für Makromoleküle und Bioimaging,
Paul Scherrer Institut, 5232 Villigen PSI, Schweiz
Telefon: +41 056 310 4175, E-Mail: meitian.wang@psi.ch

Originalveröffentlichung:
Fast native-SAD phasing for routine macromolecular structure determination
Tobias Weinert et al.,
Nature Methods 15 Dezember 2014, Advanced Online Publication
DOI: 10.1038/nmeth.3211

Weiterführende Informationen:
Gruppe Kristallographie von Makromolekülen am PSI:
www.psi.ch/macromolecular-crystallography/sls-mx-group 


Paul Scherrer Institut
Dagmar Baroke, M.A.
Abteilungsleiterin Kommunikation
CH-5232 Villigen PSI
Tel: +41 56 310 29 16
Fax: +41 56 310 27 17
dagmar.baroke@psi.ch
http://www.psi.ch 
https://twitter.com/psich_de


Weitere Informationen:

http://www.psi.ch

Leonid Leiva | PSI

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Krebsdiagnostik: Pinkeln statt Piksen?
25.05.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Kugelmühlen statt Lösungsmittel: Nanographene mit Mechanochemie
25.05.2018 | Technische Universität Dresden

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Starke IT-Sicherheit für das Auto der Zukunft – Forschungsverbund entwickelt neue Ansätze

Je mehr die Elektronik Autos lenkt, beschleunigt und bremst, desto wichtiger wird der Schutz vor Cyber-Angriffen. Deshalb erarbeiten 15 Partner aus Industrie und Wissenschaft in den kommenden drei Jahren neue Ansätze für die IT-Sicherheit im selbstfahrenden Auto. Das Verbundvorhaben unter dem Namen „Security For Connected, Autonomous Cars (SecForCARs) wird durch das Bundesministerium für Bildung und Forschung mit 7,2 Millionen Euro gefördert. Infineon leitet das Projekt.

Bereits heute bieten Fahrzeuge vielfältige Kommunikationsschnittstellen und immer mehr automatisierte Fahrfunktionen, wie beispielsweise Abstands- und...

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Mit Hilfe molekularer Schalter lassen sich künftig neuartige Bauelemente entwickeln

Einem Forscherteam unter Führung von Physikern der Technischen Universität München (TUM) ist es gelungen, spezielle Moleküle mit einer angelegten Spannung zwischen zwei strukturell unterschiedlichen Zuständen hin und her zu schalten. Derartige Nano-Schalter könnten Basis für neuartige Bauelemente sein, die auf Silizium basierende Komponenten durch organische Moleküle ersetzen.

Die Entwicklung neuer elektronischer Technologien fordert eine ständige Verkleinerung funktioneller Komponenten. Physikern der TU München ist es im Rahmen...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: GRACE Follow-On erfolgreich gestartet: Das Satelliten-Tandem dokumentiert den globalen Wandel

Die Satellitenmission GRACE-FO ist gestartet. Am 22. Mai um 21.47 Uhr (MESZ) hoben die beiden Satelliten des GFZ und der NASA an Bord einer Falcon-9-Rakete von der Vandenberg Air Force Base (Kalifornien) ab und wurden in eine polare Umlaufbahn gebracht. Dort nehmen sie in den kommenden Monaten ihre endgültige Position ein. Die NASA meldete 30 Minuten später, dass der Kontakt zu den Satelliten in ihrem Zielorbit erfolgreich hergestellt wurde. GRACE Follow-On wird das Erdschwerefeld und dessen räumliche und zeitliche Variationen sehr genau vermessen. Sie ermöglicht damit präzise Aussagen zum globalen Wandel, insbesondere zu Änderungen im Wasserhaushalt, etwa dem Verlust von Eismassen.

Potsdam, 22. Mai 2018: Die deutsch-amerikanische Satellitenmission GRACE-FO (Gravity Recovery And Climate Experiment Follow On) ist erfolgreich gestartet. Am...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Im Fokus: Klimaangepasste Pflanzen

25.05.2018 | Veranstaltungen

Größter Astronomie-Kongress kommt nach Wien

24.05.2018 | Veranstaltungen

22. Business Forum Qualität: Vom Smart Device bis zum Digital Twin

22.05.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Berufsausbildung mit Zukunft

25.05.2018 | Unternehmensmeldung

Untersuchung der Zellmembran: Forscher entwickeln Stoff, der wichtigen Membranbestandteil nachahmt

25.05.2018 | Interdisziplinäre Forschung

Starke IT-Sicherheit für das Auto der Zukunft – Forschungsverbund entwickelt neue Ansätze

25.05.2018 | Informationstechnologie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics