Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Schnelle Reaktion dank „Präzisions-Protein“

16.08.2016

Wissenschaftler von Freier Universität, Charité und Leibniz-Institut für Molekulare Pharmakologie gewinnen neue Erkenntnisse zur Kommunikation zwischen Nervenzellen

Ob wir Autofahren oder Fußball spielen – In vielen Situationen müssen wir blitzschnell auf äußere Reize reagieren. Doch wie wird gewährleistet, dass die Signalübertragung zwischen den Nervenzellen unseres Körpers in Sekundenbruchteilen geschieht? Wissenschaftlerinnen und Wissenschaftler der Freien Universität Berlin, der Charité – Universitätsmedizin Berlin und des Leibniz-Institutes für Molekulare Pharmakologie haben jetzt im Rahmen eines internationalen Forschungsverbundes einen wichtigen Beitrag zur Aufklärung dieses Mechanismus geleistet.


Illustration der Neurotransmitter Freisetzung über Unc13A und Unc13B. Unc13A wird in einem Abstand von 70 nm von der Kalziumquelle (Cac; blau) durch Bruchpilot (BRP; grün) und RBP (rot) positioniert. Unc13B (orange) wird in einem größeren Abstand von 120 nm positioniert. Der Farbübergang von dunkel- zu hellblau im Hintergrund kennzeichnet unterschiedlich hohe Kalziumkonzentrationen, die von Vesikel detektiert werden

Sie fanden heraus, dass ein bestimmtes Protein (Unc13A) an den Verbindungsstellen der Nervenzellen – den Synapsen – für eine extrem präzise molekulare „Verknüpfung“ sorgt und damit für die ultraschnelle Weiterleitung der Reize verantwortlich ist. Die Ergebnisse, die nun in der Fachzeitschrift „Nature Neuroscience“ publiziert wurden, erlauben Einblicke in die Prinzipien, mit denen Synapsen auf molekularer Ebene und mit hoher Genauigkeit Signalübertagung räumlich und zeitlich optimieren.

Nervenzellen kommunizieren mit Hilfe von elektrischen und chemischen Signalen. Die Übertragung der Reize von Zelle zu Zelle erfolgt dabei über spezielle Verbindungsstellen, die Synapsen. Dort wird das ankommende elektrische Signal in ein chemisches Signal umgewandelt und so über den sehr engen synaptischen Spalt, der zwei benachbarte Zellen voneinander trennt, transportiert, um dann auf der anderen Seite wiederum in ein elektrisches Signal umgebildet und weitergeleitet zu werden.

Die chemische Reizweiterleitung erfolgt über Botenstoffe, die so genannten Neurotransmitter, die sich in kleinen Vesikeln (lat. „Bläschen“) in der Synapse befinden. Kommt ein elektrischer Impuls an der Synapse an, verändert er die Spannung in der Zellmembran, wodurch kurzzeitig Kalziumionen in die Synapse strömen.

Die Erhöhung der Kalziumkonzentration führt wiederum dazu, dass sich die Vesikel zum synaptischen Spalt öffnen und die Botenstoffe freisetzen, die dann in der benachbarten Nervenzelle zu einer Weiterleitung des Signals führen, zum Beispiel zur Kontraktion eines Muskels. All dies passiert innerhalb weniger Millisekunden, was unter anderem nur möglich ist, weil der Abstand zwischen Vesikeln und den Kanälen in der Zellmembran, durch die das Kalzium in die Zelle einströmt, genauestens definiert wird.

Wie exakt der Mechanismus geregelt ist, fanden Wissenschaftler des Exzellenzclusters NeuroCure unter Leitung von Prof. Dr. Stephan Sigrist und Dr. Alexander Walter vom Leibniz-Institut für Molekulare Pharmakologie nun am motoneuronalen Nervensystem der Taufliege (Drosophila melanogaster) heraus.

Sie entdeckten, dass das Protein Unc13A die mit dem Botenstoff gefüllten Vesikel mit Nanometer-Präzision an die Kalzium-Quelle – also die Kalziumkanäle in der Zellmembran – koppelt und so die blitzschnelle und effiziente Signalübertragung ermöglicht. Bei der exakten Positionierung der Vesikel spielen noch zwei weitere Proteine eine Rolle, die mit Hilfe der Arbeitsgruppen um Prof. Dr. Ulrich Stelzl von der Universität Graz und Prof. Dr. Markus Wahl von der Freien Universität Berlin identifiziert werden konnten: Wie zwei Mess-Schieber auf einem Lineal sorgen diese beiden Eiweiße dafür, dass der wohl definierte Abstand zwischen Vesikel und der Kalzium-Quelle stets eingehalten wird.

Erstaunlich für die Wissenschaftler war, dass das sehr eng verwandte Protein Unc13B für die Signalübertragung eine untergeordnete Rolle spielt. Dies – so legen die Experimente und theoretischen Berechnungen nah – ist vermutlich darin begründet, dass das Protein nicht so nahe an die Kalzium-Quelle gekoppelt ist. Auch Unc13B wird im Verbund eines Proteinkomplexes an Ort und Stelle gehalten, allerdings auf Distanz.

Die Längenunterschiede bewegen sich lediglich auf der Nanometer-Skala (1 Nanometer = 1 Millionstel Millimeter), sie konnten nur mit einem besonders hochauflösenden Mikroskop im Laboratorium von Chemie-Nobelpreisträger Prof. Dr. Stefan Hell vom Max Plack Institut für Biophysikalische Chemie Göttingen überhaupt detektiert werden. Dennoch führe das zu vollkommen unterschiedlichen Funktionalitäten, sind die Wissenschaftler überzeugt: Während Unc13A eine schnelle und effiziente Signalleitung ermöglicht, spielt Unc13B aufgrund seiner minimal größeren Entfernung von der Kalzium-Quelle hierbei kaum eine Rolle. Es werde aber wohl in der Entwicklung der Synapse benötigt.

Mit Ihrer Arbeit sind die Forscher einem sehr wesentlichen, jedoch mechanistisch noch wenig verstandenen Prinzip auf die Spur gekommen: wie Synapsen durch räumliche Kontrolle der Vesikelposition ihre Transmissionseigenschaften steuern.

Das Paper ist veröffentlicht in: Nature Neuroscience 10.1038/nn.4364.

Ansprechpartner für weitere Informationen:

Dr. Alexander M. Walter
Molecular and Theoretical Neuroscience
Leibniz Institute für Moleculare Pharmakologie
Charité Campus Mitte
Charitéplatz 1
10117 Berlin
Tel.: +49 (0)30-450-639-026
awalter@fmp-berlin.de

Prof. Dr. Stephan Sigrist
Institut für Biologie / Genetik
NeuroCure Exzellenzcluster
Takustraße 6
14195 Berlin,
Tel.: +49 (0)30-838-56940
stephan.sigrist@fu-berlin.de

Silke Oßwald | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Überleben auf der Schneeball-Erde
21.09.2017 | Max-Planck-Institut für Biogeochemie, Jena

nachricht Hochpräzise Verschaltung in der Hirnrinde
21.09.2017 | Max-Planck-Institut für Hirnforschung

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Höher - schneller - weiter: Der Faktor Mensch in der Luftfahrt

20.09.2017 | Veranstaltungen

Wälder unter Druck: Internationale Tagung zur Rolle von Wäldern in der Landschaft an der Uni Halle

20.09.2017 | Veranstaltungen

7000 Teilnehmer erwartet: 69. Urologen-Kongress startet heute in Dresden

20.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Granulare Materie blitzschnell im Bild

21.09.2017 | Verfahrenstechnologie

Hochpräzise Verschaltung in der Hirnrinde

21.09.2017 | Biowissenschaften Chemie

Überleben auf der Schneeball-Erde

21.09.2017 | Biowissenschaften Chemie