Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Schnelle Reaktion dank „Präzisions-Protein“

16.08.2016

Wissenschaftler von Freier Universität, Charité und Leibniz-Institut für Molekulare Pharmakologie gewinnen neue Erkenntnisse zur Kommunikation zwischen Nervenzellen

Ob wir Autofahren oder Fußball spielen – In vielen Situationen müssen wir blitzschnell auf äußere Reize reagieren. Doch wie wird gewährleistet, dass die Signalübertragung zwischen den Nervenzellen unseres Körpers in Sekundenbruchteilen geschieht? Wissenschaftlerinnen und Wissenschaftler der Freien Universität Berlin, der Charité – Universitätsmedizin Berlin und des Leibniz-Institutes für Molekulare Pharmakologie haben jetzt im Rahmen eines internationalen Forschungsverbundes einen wichtigen Beitrag zur Aufklärung dieses Mechanismus geleistet.


Illustration der Neurotransmitter Freisetzung über Unc13A und Unc13B. Unc13A wird in einem Abstand von 70 nm von der Kalziumquelle (Cac; blau) durch Bruchpilot (BRP; grün) und RBP (rot) positioniert. Unc13B (orange) wird in einem größeren Abstand von 120 nm positioniert. Der Farbübergang von dunkel- zu hellblau im Hintergrund kennzeichnet unterschiedlich hohe Kalziumkonzentrationen, die von Vesikel detektiert werden

Sie fanden heraus, dass ein bestimmtes Protein (Unc13A) an den Verbindungsstellen der Nervenzellen – den Synapsen – für eine extrem präzise molekulare „Verknüpfung“ sorgt und damit für die ultraschnelle Weiterleitung der Reize verantwortlich ist. Die Ergebnisse, die nun in der Fachzeitschrift „Nature Neuroscience“ publiziert wurden, erlauben Einblicke in die Prinzipien, mit denen Synapsen auf molekularer Ebene und mit hoher Genauigkeit Signalübertagung räumlich und zeitlich optimieren.

Nervenzellen kommunizieren mit Hilfe von elektrischen und chemischen Signalen. Die Übertragung der Reize von Zelle zu Zelle erfolgt dabei über spezielle Verbindungsstellen, die Synapsen. Dort wird das ankommende elektrische Signal in ein chemisches Signal umgewandelt und so über den sehr engen synaptischen Spalt, der zwei benachbarte Zellen voneinander trennt, transportiert, um dann auf der anderen Seite wiederum in ein elektrisches Signal umgebildet und weitergeleitet zu werden.

Die chemische Reizweiterleitung erfolgt über Botenstoffe, die so genannten Neurotransmitter, die sich in kleinen Vesikeln (lat. „Bläschen“) in der Synapse befinden. Kommt ein elektrischer Impuls an der Synapse an, verändert er die Spannung in der Zellmembran, wodurch kurzzeitig Kalziumionen in die Synapse strömen.

Die Erhöhung der Kalziumkonzentration führt wiederum dazu, dass sich die Vesikel zum synaptischen Spalt öffnen und die Botenstoffe freisetzen, die dann in der benachbarten Nervenzelle zu einer Weiterleitung des Signals führen, zum Beispiel zur Kontraktion eines Muskels. All dies passiert innerhalb weniger Millisekunden, was unter anderem nur möglich ist, weil der Abstand zwischen Vesikeln und den Kanälen in der Zellmembran, durch die das Kalzium in die Zelle einströmt, genauestens definiert wird.

Wie exakt der Mechanismus geregelt ist, fanden Wissenschaftler des Exzellenzclusters NeuroCure unter Leitung von Prof. Dr. Stephan Sigrist und Dr. Alexander Walter vom Leibniz-Institut für Molekulare Pharmakologie nun am motoneuronalen Nervensystem der Taufliege (Drosophila melanogaster) heraus.

Sie entdeckten, dass das Protein Unc13A die mit dem Botenstoff gefüllten Vesikel mit Nanometer-Präzision an die Kalzium-Quelle – also die Kalziumkanäle in der Zellmembran – koppelt und so die blitzschnelle und effiziente Signalübertragung ermöglicht. Bei der exakten Positionierung der Vesikel spielen noch zwei weitere Proteine eine Rolle, die mit Hilfe der Arbeitsgruppen um Prof. Dr. Ulrich Stelzl von der Universität Graz und Prof. Dr. Markus Wahl von der Freien Universität Berlin identifiziert werden konnten: Wie zwei Mess-Schieber auf einem Lineal sorgen diese beiden Eiweiße dafür, dass der wohl definierte Abstand zwischen Vesikel und der Kalzium-Quelle stets eingehalten wird.

Erstaunlich für die Wissenschaftler war, dass das sehr eng verwandte Protein Unc13B für die Signalübertragung eine untergeordnete Rolle spielt. Dies – so legen die Experimente und theoretischen Berechnungen nah – ist vermutlich darin begründet, dass das Protein nicht so nahe an die Kalzium-Quelle gekoppelt ist. Auch Unc13B wird im Verbund eines Proteinkomplexes an Ort und Stelle gehalten, allerdings auf Distanz.

Die Längenunterschiede bewegen sich lediglich auf der Nanometer-Skala (1 Nanometer = 1 Millionstel Millimeter), sie konnten nur mit einem besonders hochauflösenden Mikroskop im Laboratorium von Chemie-Nobelpreisträger Prof. Dr. Stefan Hell vom Max Plack Institut für Biophysikalische Chemie Göttingen überhaupt detektiert werden. Dennoch führe das zu vollkommen unterschiedlichen Funktionalitäten, sind die Wissenschaftler überzeugt: Während Unc13A eine schnelle und effiziente Signalleitung ermöglicht, spielt Unc13B aufgrund seiner minimal größeren Entfernung von der Kalzium-Quelle hierbei kaum eine Rolle. Es werde aber wohl in der Entwicklung der Synapse benötigt.

Mit Ihrer Arbeit sind die Forscher einem sehr wesentlichen, jedoch mechanistisch noch wenig verstandenen Prinzip auf die Spur gekommen: wie Synapsen durch räumliche Kontrolle der Vesikelposition ihre Transmissionseigenschaften steuern.

Das Paper ist veröffentlicht in: Nature Neuroscience 10.1038/nn.4364.

Ansprechpartner für weitere Informationen:

Dr. Alexander M. Walter
Molecular and Theoretical Neuroscience
Leibniz Institute für Moleculare Pharmakologie
Charité Campus Mitte
Charitéplatz 1
10117 Berlin
Tel.: +49 (0)30-450-639-026
awalter@fmp-berlin.de

Prof. Dr. Stephan Sigrist
Institut für Biologie / Genetik
NeuroCure Exzellenzcluster
Takustraße 6
14195 Berlin,
Tel.: +49 (0)30-838-56940
stephan.sigrist@fu-berlin.de

Silke Oßwald | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Entzündung weckt Schläfer
29.03.2017 | Eidgenössische Technische Hochschule Zürich (ETH Zürich)

nachricht Rostocker Forscher wollen Glyphosat „entzaubern“
29.03.2017 | Universität Rostock

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantenkommunikation: Wie man das Rauschen überlistet

Wie kann man Quanteninformation zuverlässig übertragen, wenn man in der Verbindungsleitung mit störendem Rauschen zu kämpfen hat? Uni Innsbruck und TU Wien präsentieren neue Lösungen.

Wir kommunizieren heute mit Hilfe von Funksignalen, wir schicken elektrische Impulse durch lange Leitungen – doch das könnte sich bald ändern. Derzeit wird...

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Das anwachsende Ende der Ordnung

Physiker aus Konstanz weisen sogenannte Mermin-Wagner-Fluktuationen experimentell nach

Ein Kristall besteht aus perfekt angeordneten Teilchen, aus einer lückenlos symmetrischen Atomstruktur – dies besagt die klassische Definition aus der Physik....

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Organisch-anorganische Heterostrukturen mit programmierbaren elektronischen Eigenschaften

29.03.2017 | Energie und Elektrotechnik

Klein bestimmt über groß?

29.03.2017 | Physik Astronomie

OLED-Produktionsanlage aus einer Hand

29.03.2017 | Messenachrichten