Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Schnell und stabil: Neues Kopiersystem für DNA

16.02.2017

Für die Evolution von Zellen und Organismen ist entscheidend, dass informationstragende Moleküle wie DNA-Sequenzen kopiert werden, bevor sie degradieren. Dabei hat das Zusammenspiel von DNA-Replikatoren eine wichtige Rolle.

In allen lebenden Organismen gibt es auf molekularer Ebene eine Arbeitsteilung: Nukleinsäuren (DNA und RNA) speichern die Information zum Aufbau von Proteinen, die wiederum verschiedene Funktionen wie etwa das Katalysieren chemischer Reaktionen übernehmen.


Grafik: rost9 / fotolia.com

Quelle: LMU

In den letzten Jahren hat sich allerdings herausgestellt, dass insbesondere RNA diese Arbeitsteilung zu „ignorieren“ scheint und in vielen Prozessen entscheidende Funktionen übernimmt.

Diese Vielseitigkeit der Moleküle könnte auch erklären helfen, wie das Leben seinen Anfang nahm. So können Nukleinsäuren beispielsweise das Kopieren anderer Nukleinsäuren katalysieren. Hierbei ist wichtig, dass nur Moleküle kopiert werden, deren Informationen weitergegeben werden sollen.

Sogenannte Primer helfen in biologischen Prozessen oft, diese „Spezies“ zu erkennen. Das sind kurze Nukleinsäuren mit einer bestimmten Sequenz, die mit einem Teil des Moleküls, das kopiert wird, eine Doppelhelix bilden. Sie sind der Startpunkt für die Replikation und verlängern sich im weiteren Prozess zur komplementären DNA-Strang.

Vor- und Nachteile der Haarnadel-Struktur

Ausgehend von solch einem System haben sich Georg Urtel und Thomas Rind aus der Arbeitsgruppe von Professor. Dieter Braun (Biophysik, LMU München) gefragt, welche Eigenschaften diese DNA-Moleküle haben. In Experimenten replizierten die Wissenschaftler dazu zunächst DNA mit einer sogenannten „Hairpin-Struktur“.

Bei diesen Molekülen sind einige Basen am Anfang und am Ende komplementär und bilden kurze Paarfolgen, so dass die Enden des Moleküls aneinander binden. Die Form erinnert dem Namen entsprechend an eine Haarnadel.

Beim Kopieren eines DNA-Moleküls entsteht das in der Basenfolge dazu komplementäre Molekül, das exakte Gegenstück sozusagen, da nur immer zwei der vier verschiedenen Basen zusammenpassen. Um beide Moleküle replizieren zu können, benötigt man daher normalerweise zwei verschiedene Primer.

Der Vorteil von Hairpin-Molekülen ist, dass das Ursprungsmolekül und das entsprechende Komplement den gleichen Primer benötigen. „Das macht Hairpins zu relativ simplen Replikatoren“, erklärt Georg Urtel. „Allerdings erschwert die Hairpin-Struktur das Anbinden der Primer an das DNA-Molekül und bremst die Replikationsrate. Dieses Problem haben Spezies ohne Hairpin-Struktur nicht“.

Aus zwei mach eins

In ihren Experimenten entdeckten die Wissenschaftler, dass durch Kooperation von zwei simplen Hairpin-Spezies ein deutlich schnellerer Replikator entsteht, der zwei Primer benötigen. Die ausgewählten Hairpin-Spezies benötigten unterschiedliche Primer, besaßen aber ansonsten teilweise identische Sequenzen. Im ersten Schritt des Übergangs muss die Replikation eines Hairpin-Moleküls unterbrochen werden. „In der Regel sind Replikationsprozesse in der Natur nie perfekt“, so Dieter Braun.

„Dieses Verhalten muss man nicht erzwingen, sondern es passiert stochastisch und wir nutzen das für unsere Experimente“. Ein unfertig repliziertes Hairpin-Molekül kann nun an ein Molekül der zweiten Spezies binden und dabei wie ein Primer verlängert werden. Das so entstandene Molekül hat keine Hairpin-Struktur mehr, sondern stellt eine neue Spezies dar. Solche Crossbreeds benötigen nun zwei Primer, replizieren allerdings viel schneller.

Vor dem Aussterben gerettet

In den Experimenten zeigte sich, dass DNA-Moleküle mit Hairpin-Struktur im Vergleich zu Crossbreeds bei Verdünnung rasch aussterben. Durch die Bildung von Crossbreeds und die damit verbundene schnellere Replikation kann Hairpin-DNA ihre Informationen in diesen sicher abspeichern und weiter kopieren.

Dass die Information tatsächlich erhalten bleibt, konnte durch die Umkehrreaktion gezeigt werden: Haben Crossbreeds nur einen Primer zur Verfügung, entsteht die entsprechende Hairpin-Spezies durch einen ähnlichen Übergangs-Prozess wie oben beschrieben. Weil ein Primer fehlt, stirbt nun der Crossbreed aus.

„Der Crossbreeding-Prozess erlaubt also nicht nur den Übergang von simplen, langsamen Replikatoren zu schnelleren Replikatoren, sondern ermöglicht es zudem, sich an die Umweltbedingungen anzupassen“, beschreibt Georg Urtel die Vorteile. „Solch ein Prozess zeigt uns daher auch, wie zu Beginn des Lebens bereits frühe Replikatoren kooperiert haben könnten.“
Physical Review Letters 2017

Publikation:
Reversible switching of cooperating replicators.
Georg C. Urtel, Thomas Rind and Dieter Braun.
Physical Review Letters 2017
DOI: 10.1103/PhysRevLett.118.078102

Kontakt:
Prof. Dr. Dieter Braun
LMU, Systems Biophysics
Telefon: +49 (0) 89 / 2180-2317
E-Mail: dieter.braun@lmu.de

Luise Dirscherl | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.uni-muenchen.de/

Weitere Berichte zu: DNA-Moleküle LMU Ludwig-Maximilians-Universität Molekül Nukleinsäuren RNA dna

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht In Hochleistungs-Mais sind mehr Gene aktiv
19.01.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Warum es für Pflanzen gut sein kann auf Sex zu verzichten
19.01.2018 | Universität Wien

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Maschinelles Lernen im Quantenlabor

Auf dem Weg zum intelligenten Labor präsentieren Physiker der Universitäten Innsbruck und Wien ein lernfähiges Programm, das eigenständig Quantenexperimente entwirft. In ersten Versuchen hat das System selbständig experimentelle Techniken (wieder)entdeckt, die heute in modernen quantenoptischen Labors Standard sind. Dies zeigt, dass Maschinen in Zukunft auch eine kreativ unterstützende Rolle in der Forschung einnehmen könnten.

In unseren Taschen stecken Smartphones, auf den Straßen fahren intelligente Autos, Experimente im Forschungslabor aber werden immer noch ausschließlich von...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Fliegen wird smarter – Kommunikationssystem LYRA im Lufthansa FlyingLab

• Prototypen-Test im Lufthansa FlyingLab
• LYRA Connect ist eine von drei ausgewählten Innovationen
• Bessere Kommunikation zwischen Kabinencrew und Passagieren

Die Zukunft des Fliegens beginnt jetzt: Mehrere Monate haben die Finalisten des Mode- und Technologiewettbewerbs „Telekom Fashion Fusion & Lufthansa FlyingLab“...

Im Focus: Ein Atom dünn: Physiker messen erstmals mechanische Eigenschaften zweidimensionaler Materialien

Die dünnsten heute herstellbaren Materialien haben eine Dicke von einem Atom. Sie zeigen völlig neue Eigenschaften und sind zweidimensional – bisher bekannte Materialien sind dreidimensional aufgebaut. Um sie herstellen und handhaben zu können, liegen sie bislang als Film auf dreidimensionalen Materialien auf. Erstmals ist es Physikern der Universität des Saarlandes um Uwe Hartmann jetzt mit Forschern vom Leibniz-Institut für Neue Materialien gelungen, die mechanischen Eigenschaften von freitragenden Membranen atomar dünner Materialien zu charakterisieren. Die Messungen erfolgten mit dem Rastertunnelmikroskop an Graphen. Ihre Ergebnisse veröffentlichen die Forscher im Fachmagazin Nanoscale.

Zweidimensionale Materialien sind erst seit wenigen Jahren bekannt. Die Wissenschaftler André Geim und Konstantin Novoselov erhielten im Jahr 2010 den...

Im Focus: Forscher entschlüsseln zentrales Reaktionsprinzip von Metalloenzymen

Sogenannte vorverspannte Zustände beschleunigen auch photochemische Reaktionen

Was ermöglicht den schnellen Transfer von Elektronen, beispielsweise in der Photosynthese? Ein interdisziplinäres Forscherteam hat die Funktionsweise wichtiger...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Kongress Meditation und Wissenschaft

19.01.2018 | Veranstaltungen

LED Produktentwicklung – Leuchten mit aktuellem Wissen

18.01.2018 | Veranstaltungen

6. Technologie- und Anwendungsdialog am 18. Januar 2018 an der TH Wildau: „Intelligente Logistik“

18.01.2018 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rittal vereinbart mit dem Betriebsrat von RWG Sozialplan - Zukunftsorientierter Dialog führt zur Einigkeit

19.01.2018 | Unternehmensmeldung

Open Science auf offener See

19.01.2018 | Geowissenschaften

Original bleibt Original - Neues Produktschutzverfahren für KFZ-Kennzeichenschilder

19.01.2018 | Informationstechnologie