Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Schnappschuss aus der Zentrale des pflanzlichen Immunsystems

11.12.2013
Die molekulare Architektur von drei Schlüsselproteinen und ihren Komplexen zeigt, wie Pflanzen die Abwehr von Krankheitserregern dirigieren

Pflanzen werden in ihrer natürlichen Umgebung nur selten krank. Droht eine Infektion, wird schnell über die nötigen Gegenmaßnahmen entschieden. Die Weichen stellt ein Protein, das zu diesem Zweck Komplexe mit seinen Partnerproteinen bildet.


Planzenzellen im Kampf gegen mikrobielle Krankheitserreger: Heterodimere Proteinkomplexe aus EDS1 (blau) sowie SAG101 (grün) oder PAD4 (braun) steuern, welche Zellen am Infektionsherd geopfert werden und welche gegen eine Ausbreitung des Pathogens immunisiert werden.

© MPI f. Pflanzenzüchtungsforschung/Stephan Wagner

Jane Parker vom Max-Planck-Institut für Pflanzenzüchtungsforschung in Köln und Karsten Niefind vom Institut für Biochemie der Universität Köln haben mit ihren Mitarbeitern die dreidimensionale Struktur eines solchen Komplexes ermittelt. Mit diesen Nahaufnahmen wird man die pflanzliche Immunabwehr bald besser verstehen können.

Pflanzen setzen sich - wie andere Lebewesen auch - gegen Krankheitserreger zur Wehr. Weil diese Immunreaktionen aber mit erheblichem Stress verbunden sind, entscheiden die infizierten Zellen sehr genau, was tatsächlich nötig ist. Dafür verwenden sie mehrere Verteidigungslinien. Jede vom Krankheitserreger eroberte Verteidigungslinie zwingt die infizierten Zellen zu größeren Anstrengungen bei der Immunabwehr. Am Infektionsort setzen sie auf eine radikale Lösung und schicken die infizierte Zelle in den programmierten Zelltod, den sie allerdings genau kontrollieren müssen. Über eine Änderung des genetischen Programms wird der Rest der Pflanze gewarnt, so dass er sich auf einen möglichen Angriff vorbereiten kann.

Eine Verteidigungslinie ist die sogenannte „Effektor getriggerte Immunität“. Bei dieser Stufe erkennen pflanzliche Immunrezeptoren die spezifischen Virulenzfaktoren eines hochangepassten Krankheitserregers. Was danach geschieht, hängt davon ab, welche Komplexe das mobile, im Zellkern und im Zytoplasma vorhandene Protein EDS1 mit seinen Partnerproteinen PAD4 und SAG101 bildet. EDS1 stellt die Weichen bei der Organisation der Immunabwehr, indem es sich mit seinen Partnern zu verschiedenen Zweierkomplexen - sogenannten Heterodimeren - zusammenfindet. Je nach Art des Komplexes variiert die Immunantwort. Strukturell gesehen sind die drei Eiweiße ähnlich. Die Vielfalt entsteht durch die Komplexbildung, die genau abgestimmte Reaktionen möglich macht. „Wir wollen wissen, wie die Dynamik bei der Übermittelung der Resistenzsignale funktioniert, wie über bestimmte Resistenzleistungen entschieden wird und wie die verschiedenen Stoffwechselwege zur Stressbewältigung miteinander kommunizieren“, sagt Jane Parker über ihr Interesse an den drei Proteinen.

Karsten Niefind und Stephan Wagner von der Universität Köln haben zusammen mit Jane Parker und Johannes Stuttmann vom Max-Planck-Institut für Pflanzenzüchtungsforschung sowie weiteren Kollegen die atomare Struktur des EDS1-SAG101 Komplexes durch Röntgenstrukturanalyse ermittelt und aus dieser dreidimensionalen Struktur ein Modell für den EDS1-PAD4 Komplex abgeleitet. Alle drei Eiweiße besitzen an ihrem N-terminalen Ende eine Domäne mit einer sogenannten α/β-Hydrolasefaltung. Diese Faltung ist eine der erfolgreichsten Architekturen in der Proteinevolution. Sie kommt in ähnlicher Form auch in fettspaltenden Lipasen und diversen anderen Enzymen vor. „Wir wollten natürlich wissen, ob EDS1 alleine oder im heterodimeren Komplex eine Lipase-Aktivität hat und ob EDS1 diese Lipase-Aktivität für seine Funktionen braucht“, sagt Parker. „Die überraschende Antwort der Struktur lautet nein, denn das potenzielle aktive Zentrum wird vollständig durch eine Art Deckel abgeschirmt. Auch im Reagenzglas konnten wir keinerlei Lipase-Aktivität entdecken.“ Mehr noch: Parker und ihre Kollegen haben gezeigt, dass Arabidopsis-Pflanzen, in denen das vermeintliche katalytische Zentrum von EDS1 und PAD4 durch Mutationen zerstört worden ist, trotzdem genauso resistent gegenüber bestimmten Krankheitserregern sind wie der Wildtyp.

Wie meistert nun EDS1 seine Aufgabe, wenn nicht über die katalytische Aktivität? Hier gibt die Röntgenstruktur des EDS1/SAG101-Komplexes einen wertvollen Fingerzeig. EDS1 besitzt in seiner N-terminalen Domäne eine auffällige Ausstülpung, die sich wie ein Anker in eine passende Mulde von SAG101 legt. Auch PAD4 ist mit dieser Mulde ausgestattet und kann die entsprechende Ausstülpung von EDS1 beherbergen. Die Kölner Wissenschaftler haben diese Regionen nun gezielt mutiert und dadurch gezeigt, dass die zentrale Aufgabe der Lipase-ähnlichen Domäne in der Bereitstellung dieser Kontaktflächen besteht. Erst durch das Zusammengehen von Mulde und Ausstülpung werden die wichtigen C-terminalen Domänen der beiden Komplexpartner in räumliche Nähe gebracht, so dass ein neues funktionelles Modul entstehen kann. Ohne Lipase-ähnliche Domäne also keine stabilen Komplexe, ohne heterodimerisierte C-terminale Domäne keine Immunantwort!

Wie es nach der Bildung der Heterodimere in der Zelle weitergeht, wird derzeit intensiv untersucht. Niefind dazu: „Die Röntgenstruktur hat uns nicht nur den Mecha­nismus der Heterodimerisierung in der EDS1-Proteinfamilie offenbart. Sie zeigt uns auch markante Oberflächen und Bindungstaschen, die nur in den Dimeren existieren und die der Schlüssel für ein umfassendes Verständnis pflanzlicher Pathogenabwehr sein werden.“

Ansprechpartner
Apl. Professor Dr. Jane Parker
Max-Planck-Institut für Pflanzenzüchtungsforschung, Köln
Telefon: +49 221 5062-303
E-Mail: parker@mpipz.mpg.de
Apl. Prof. Dr. Karsten Niefind
Max-Planck-Institut für Pflanzenzüchtungsforschung, Köln
Telefon: +49 221 470-6444
E-Mail: karsten.niefind@uni-koeln.de
Originalpublikation
Stephan Wagner et al.
Structural basis for signaling by exclusive EDS1 heteromeric complexes with SAG101 or PAD4 in plant innate immunity

Cell Host Microbe: Doi:10.1016/j.chom.2013.11.006

Apl. Professor Dr. Jane Parker | Max-Planck-Institut
Weitere Informationen:
http://www.mpg.de/7652194/proteinkomplexe_immunsystem

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wie Reize auf dem Weg ins Bewusstsein versickern
22.09.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Lebendiges Gewebe aus dem Drucker
22.09.2017 | Universitätsklinikum Freiburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie