Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Schmelzende Kristalle und modifizierte Proteine

24.05.2016

Pharmazeuten der Uni Würzburg und die NovartisPharma AG erforschen gemeinsam, wie Proteine modifiziert werden können, um zum Beispiel die Wundheilung zu beschleunigen. Der wissenschaftliche Nachwuchs ist eng in die Zusammenarbeit eingebunden.

Aus der Industrie zurück in die Forschung: Professor Lorenz Meinel hat früher in der technischen Entwicklung bei der NovartisPharma AG gearbeitet, 2010 folgte er dann dem Ruf der Universität Würzburg auf den Lehrstuhl für Pharmazeutische Technologie.


So komplex ist die Struktur eines Interleukin-4 Proteins.

(Foto: Vera Katzenberger)

Seitdem untersucht er mit seinem Team, wie sich Wirkstoffe modifizieren und damit verbessern lassen. In der Industrie stößt das natürlich auf großes Interesse. „Meine praktischen Berufserfahrungen in Pharmakonzernen ergänzen meine Forschungsarbeit sehr gut“, sagt Meinel. Auch darum hat er sich für eine enge Zusammenarbeit zwischen seinem ehemaligen Arbeitgeber und der Uni Würzburg stark gemacht.

Proteine für eine verbesserte Wundheilung

Die Kooperation wurde 2016 ins Leben gerufen. Seitdem erforschen die Würzburger Pharmazeuten mit der NovartisPharma AG unter anderem das Proteinmolekül Interleukin-4. Interleukine sind körpereigene Botenstoffe, die bei Immunreaktionen für die Kommunikation zwischen Immunzellen und Körpergewebe zuständig sind.

„Bindet das Interleukin-4 an die Oberfläche von einigen Gewebezellen, transportiert es Informationen an diese Zellen. Daraufhin produzieren diese dann beispielsweise Botenstoffe, die die Wundheilung fördern können“, erklärt Meinel.

Hier ist der Würzburger Forschung eine bedeutende Neuerung gelungen: „Durch Modifikationen an dem Protein kann es an Oberflächen immer an der eingebrachten Modifikation gebunden werden, sodass von diesen Oberflächen ein dauerhafter Interleukin-4-Stimulus an die umgebenden Zellen ausgesendet werden kann.“

Das eröffnet neue Perspektiven: Das Interleukin könnte zum Beispiel auf Implantaten oder Wundauflagen bei Patienten angewendet werden und so die Heilung ankurbeln. Gerade für solche Praxisstudien setzt Meinel auf den Industriepartner: „Bei Praxistests von Medikamenten haben Pharmakonzerne eine sehr große und wertvolle Erfahrung. Andererseits unterliegt die Universität nicht den strengen Zeitvorgaben, die in der Industrie gelten, so dass Fragen, die eine längere Forschung bedingen, vor allem an einer Universität beantwortet werden können.“

So können beide Seiten voneinander profitieren. Rund 20 Prozent aller Forschungsprojekte in der Würzburger Pharmazie basieren laut Meinel mittlerweile auf Kooperationen mit der Wirtschaft.

Wirkstoff-Kristalle instabil gemacht

Nicht nur das Interleukin-4 interessiert die Pharmazeuten derzeit. Ein besonderes Augenmerk legen Meinel und sein Forschungsteam auch auf sogenannte Wirkstoffsalze. In den resultierenden Kristallstrukturen lagern sich Wirkstoff und Gegen-Ion in Form eines Gitters eng aneinander.

Die Arbeitsgruppe funktionalisiert diese Salze dahingehend, dass sie sich auf ein Signal hin, zum Beispiel durch UV-Licht, in wenigen Sekunden auflösen und verflüssigen – dadurch kann sich die Aufnahme beispielsweise nach Auftragen auf der Haut mit nachfolgender Bestrahlung deutlich erhöhen. Den Patienten steht so mehr wirksamer Arzneistoff zur Verfügung.

Doktoranden sammeln Praxiserfahrung

Für den wissenschaftlichen Nachwuchs der Universität bietet die Kooperation mit der Novartis­Pharma AG ebenfalls viele Chancen. Im Zusammenhang mit beiden Projekten arbeiten einige Doktoranden direkt bei dem Unternehmen, andere an der Universität. In regelmäßigen Treffen tauschen sich die jungen Wissenschaftler über aktuelle Fortschritte aus.

Auch Dr. Johannes Wiest hat in einem der Teams geforscht. Sein Ziel war es, neue ionische Flüssigkeiten zu entwickeln, um damit die Löslichkeit eines schwer wasserlöslichen Wirkstoffes zu verbessern. „Unsere Arbeit könnte in Zukunft vielleicht dazu führen, dass sich der Wirkstoff im menschlichen Körper besser freisetzt, so dass mehr Wirkstoff aufgenommen werden kann“, sagt Wiest.

In der Wirtschaft sei es unter anderem wichtig, schnell zu handeln. Und an der Uni bestehe der große Vorteil, auch unkonventionelle Ideen ausprobieren zu können, so der Pharmazeut. „So kann die Wissenschaft beispielsweise Ideen und Impulse für die Entwicklung neuer Produkte oder Wirkstoffe liefern, und die Industrie kann diese mit ihrem Know-how und ihren finanziellen Mitteln zur Marktreife bringen.“ So könne jede Seite von der anderen profitieren.

Kontakt

Prof. Dr. Dr. Lorenz Meinel, Lehrstuhl für Pharmazeutische Technologie, Universität Würzburg, T (0931) 31-83765, lorenz.meinel@pharmazie.uni-wuerzburg.de


Robert Emmerich | Julius-Maximilians-Universität Würzburg
Weitere Informationen:
http://www.uni-wuerzburg.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Verbesserte Kohlendioxid-Fixierung dank Mikrokompartiment
25.09.2017 | Max-Planck-Institut für Biochemie

nachricht Regenbogenfarben enthüllen Werdegang von Zellen
25.09.2017 | Technische Universität Dresden

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: Effizientere und präzisere Kontakte dank Roboter-Kollaboration

Auf der diesjährigen productronica in München stellt das Fraunhofer-Institut für Lasertechnik ILT das Laser-Based Tape-Automated Bonding, kurz LaserTAB, vor: Die Aachener Experten zeigen, wie sich dank neuer Optik und Roboter-Unterstützung Batteriezellen und Leistungselektronik effizienter und präziser als bisher lasermikroschweißen lassen.

Auf eine geschickte Kombination von Roboter-Einsatz, Laserscanner mit selbstentwickelter neuer Optik und Prozessüberwachung setzt das Fraunhofer ILT aus Aachen.

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Legionellen? Nein danke!

25.09.2017 | Veranstaltungen

Posterblitz und neue Planeten

25.09.2017 | Veranstaltungen

Hochschule Karlsruhe richtet internationale Konferenz mit Schwerpunkt Informatik aus

25.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Legionellen? Nein danke!

25.09.2017 | Veranstaltungsnachrichten

Hochvolt-Lösungen für die nächste Fahrzeuggeneration!

25.09.2017 | Seminare Workshops

Seminar zum 3D-Drucken am Direct Manufacturing Center am

25.09.2017 | Seminare Workshops