Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Schlupfloch für Tumorzellen

05.08.2016

Krebszellen töten Zellen der Blutgefäße, damit sie durch die Gefäßwand hindurch schlüpfen und Metastasen bilden können

Viele Krebserkrankungen werden erst zur tödlichen Gefahr, wenn sich an anderen Stellen im Körper Metastasen bilden. Diese Tochtergeschwulste entstehen, indem sich einzelne Zellen vom Tumor ablösen und über den Blutstrom in entfernte Körperbereiche transportiert werden.


Schema des Mechanismus, über den metastasierende Tumorzellen das Blutgefäß verlassen.

MPI f. Herz- und Lungenforschung

Dabei müssen sie auch die Wand kleinerer Blutgefäße überwinden. Wissenschaftler vom Max-Planck-Institut für Herz- und Lungenforschung in Bad Nauheim und der Goethe-Universität Frankfurt haben nun gezeigt, dass die Tumorzellen gezielt einzelne Zellen in der Gefäßwand abtöten. Auf diese Weise können sie die Gefäße verlassen und Metastasen bilden. Verantwortlich dafür ist ein Molekül mit dem Namen DR6.

Die häufigste Todesursache bei Krebserkrankungen stellt nicht der Primärtumor selbst dar, sondern Metastasen, die sich in der Folge bilden. Die meisten Tumorzellen breiten sich dabei über den Blutstrom aus. Dazu müssen einzelne Tumorzellen in Blutgefäße eindringen und an geeigneten Stellen die Blutbahn wieder verlassen.

Die Arbeitsgruppe von Stefan Offermanns, Direktor der Abteilung Pharmakologie am Max-Planck-Institut für Herz- und Lungenforschung und Professor an der Goethe-Universität in Frankfurt, hat nun zusammen mit Wissenschaftlern der Universitäten Köln und Heidelberg wesentliche Teile des dabei zugrundeliegenden Mechanismus aufklären können.

In Zellkulturen stellten die Forscher zunächst fest, dass einzelne Tumorzellen bestimmte Zellen der Gefäßwand, sogenannte Endothelzellen, gezielt abtöten. Dieser als Nekroptose bezeichnete Vorgang ermöglichte es den Tumorzellen im Laborexperiment, eine Endothelzellschicht zu überwinden. „Wir konnten daraufhin in Studien an der Maus zeigen, dass dies im lebenden Organismus genauso geschieht“, so Boris Strilic, Erstautor der Studie.

Todesrezeptor in der Zellmembran

Die Wissenschaftler fanden zudem heraus, dass die Endothelzellen selbst das Signal für den eigenen Tod geben: So besitzen die Gefäßwandzellen auf ihrer Oberfläche ein Rezeptormolekül mit dem Namen „Death Receptor 6“ (DR6). „Kommt eine Tumorzelle damit in Kontakt, aktiviert ein Protein auf ihrer Oberfläche mit dem Namen APP den DR6. Auf diese Weise beginnt der Angriff der Tumorzelle auf die Gefäßwand, der später mit der Nekroptose der Gefäßwandzelle endet“, sagt Strilic.

Die Max-Planck-Forscher zeigten anschließend, dass in gentechnisch veränderten Tieren, in denen der „Death Receptor 6“ ausgeschaltet worden war, weniger Nekroptose in den Endothelzellen vorkam und sich auch viel weniger Metastasen bildeten. „Dieser Effekt ließ sich auch nach einer Blockade von DR6 oder des Tumorzellproteins APP nachweisen und bestätigte somit unsere vorherigen Beobachtungen“, erläutert Strilic.

Noch nicht vollständig geklärt ist zurzeit, ob die Tumorzellen direkt durch die entstandene Lücke in der Gefäßwand hindurchwandern, oder ob es einen indirekten Effekt gibt: „Wir haben Hinweise darauf, dass vielmehr beim Absterben der Gefäßwandzelle Moleküle freigesetzt werden, die dann das umgebende Areal durchlässiger für die Tumorzelle machen“, so Offermanns.

“Dieser Mechanismus könnte ein Ansatzpunkt für Therapien sein, die die Bildung von Tumormetastasen verhindern können“, sagt Offermanns. Zunächst muss aber noch untersucht werden, ob eine Blockade von DR6 unerwünschte Nebenwirkungen auslöst. Auch ist noch zu klären, inwieweit sich die Beobachtungen auf den Menschen übertragen lassen.

Originalpublikation:
Strilic B, Yang L, Albarrán-Juárez J, Wachsmuth L, Han K, Müller UC, Pasparakis M, Offermanns S
(2016) Tumor cell-induced endothelial necroptosis via death receptor 6 promotes metastasis.
Nature; 3 August, 2016

Ansprechpartner:
Prof. Dr. Stefan Offermanns
Max-Planck-Institut für Herz- und Lungenforschung, Bad Nauheim
Telefon:+49 6032 705-1202Fax:+49 6032 705-1204
E-Mail:
stefan.offermanns@mpi-bn.mpg.de

Dr. Matthias Heil
Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Herz- und Lungenforschung, Bad Nauheim
Telefon:+49 6032 705-1705Fax:+49 6032 705-1704
E-Mail:
matthias.heil@mpi-bn.mpg.de

Weitere Informationen:

https://www.mpg.de/10679240/metastasen-dr6

Dr. Harald Rösch | Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V.

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Der Bluthochdruckschalter in der Nebenniere
20.02.2018 | Forschungszentrum Jülich GmbH

nachricht Markierung für Krebsstammzellen
20.02.2018 | Gesellschaft Deutscher Chemiker e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Die Brücke, die sich dehnen kann

Brücken verformen sich, daher baut man normalerweise Dehnfugen ein. An der TU Wien wurde eine Technik entwickelt, die ohne Fugen auskommt und dadurch viel Geld und Aufwand spart.

Wer im Auto mit flottem Tempo über eine Brücke fährt, spürt es sofort: Meist rumpelt man am Anfang und am Ende der Brücke über eine Dehnfuge, die dort...

Im Focus: Eine Frage der Dynamik

Die meisten Ionenkanäle lassen nur eine ganz bestimmte Sorte von Ionen passieren, zum Beispiel Natrium- oder Kaliumionen. Daneben gibt es jedoch eine Reihe von Kanälen, die für beide Ionensorten durchlässig sind. Wie den Eiweißmolekülen das gelingt, hat jetzt ein Team um die Wissenschaftlerin Han Sun (FMP) und die Arbeitsgruppe von Adam Lange (FMP) herausgefunden. Solche nicht-selektiven Kanäle besäßen anders als die selektiven eine dynamische Struktur ihres Selektivitätsfilters, berichten die FMP-Forscher im Fachblatt Nature Communications. Dieser Filter könne zwei unterschiedliche Formen ausbilden, die jeweils nur eine der beiden Ionensorten passieren lassen.

Ionenkanäle sind für den Organismus von herausragender Bedeutung. Wenn zum Beispiel Sinnesreize wahrgenommen, ans Gehirn weitergeleitet und dort verarbeitet...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Erste integrierte Schaltkreise (IC) aus Plastik

Erstmals ist es einem Forscherteam am Max-Planck-Institut (MPI) für Polymerforschung in Mainz gelungen, einen integrierten Schaltkreis (IC) aus einer monomolekularen Schicht eines Halbleiterpolymers herzustellen. Dies erfolgte in einem sogenannten Bottom-Up-Ansatz durch einen selbstanordnenden Aufbau.

In diesem selbstanordnenden Aufbauprozess ordnen sich die Halbleiterpolymere als geordnete monomolekulare Schicht in einem Transistor an. Transistoren sind...

Im Focus: Quantenbits per Licht übertragen

Physiker aus Princeton, Konstanz und Maryland koppeln Quantenbits und Licht

Der Quantencomputer rückt näher: Neue Forschungsergebnisse zeigen das Potenzial von Licht als Medium, um Informationen zwischen sogenannten Quantenbits...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Digitalisierung auf dem Prüfstand: Hochkarätige Konferenz zu Empowerment in der agilen Arbeitswelt

20.02.2018 | Veranstaltungen

Aachener Optiktage: Expertenwissen in zwei Konferenzen für die Glas- und Kunststoffoptikfertigung

19.02.2018 | Veranstaltungen

Konferenz "Die Mobilität von morgen gestalten"

19.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Highlight der Halbleiter-Forschung

20.02.2018 | Physik Astronomie

Wie verbessert man die Nahtqualität lasergeschweißter Textilien?

20.02.2018 | Materialwissenschaften

Der Bluthochdruckschalter in der Nebenniere

20.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics