Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Schlupfloch für Tumorzellen

05.08.2016

Krebszellen töten Zellen der Blutgefäße, damit sie durch die Gefäßwand hindurch schlüpfen und Metastasen bilden können

Viele Krebserkrankungen werden erst zur tödlichen Gefahr, wenn sich an anderen Stellen im Körper Metastasen bilden. Diese Tochtergeschwulste entstehen, indem sich einzelne Zellen vom Tumor ablösen und über den Blutstrom in entfernte Körperbereiche transportiert werden.


Schema des Mechanismus, über den metastasierende Tumorzellen das Blutgefäß verlassen.

MPI f. Herz- und Lungenforschung

Dabei müssen sie auch die Wand kleinerer Blutgefäße überwinden. Wissenschaftler vom Max-Planck-Institut für Herz- und Lungenforschung in Bad Nauheim und der Goethe-Universität Frankfurt haben nun gezeigt, dass die Tumorzellen gezielt einzelne Zellen in der Gefäßwand abtöten. Auf diese Weise können sie die Gefäße verlassen und Metastasen bilden. Verantwortlich dafür ist ein Molekül mit dem Namen DR6.

Die häufigste Todesursache bei Krebserkrankungen stellt nicht der Primärtumor selbst dar, sondern Metastasen, die sich in der Folge bilden. Die meisten Tumorzellen breiten sich dabei über den Blutstrom aus. Dazu müssen einzelne Tumorzellen in Blutgefäße eindringen und an geeigneten Stellen die Blutbahn wieder verlassen.

Die Arbeitsgruppe von Stefan Offermanns, Direktor der Abteilung Pharmakologie am Max-Planck-Institut für Herz- und Lungenforschung und Professor an der Goethe-Universität in Frankfurt, hat nun zusammen mit Wissenschaftlern der Universitäten Köln und Heidelberg wesentliche Teile des dabei zugrundeliegenden Mechanismus aufklären können.

In Zellkulturen stellten die Forscher zunächst fest, dass einzelne Tumorzellen bestimmte Zellen der Gefäßwand, sogenannte Endothelzellen, gezielt abtöten. Dieser als Nekroptose bezeichnete Vorgang ermöglichte es den Tumorzellen im Laborexperiment, eine Endothelzellschicht zu überwinden. „Wir konnten daraufhin in Studien an der Maus zeigen, dass dies im lebenden Organismus genauso geschieht“, so Boris Strilic, Erstautor der Studie.

Todesrezeptor in der Zellmembran

Die Wissenschaftler fanden zudem heraus, dass die Endothelzellen selbst das Signal für den eigenen Tod geben: So besitzen die Gefäßwandzellen auf ihrer Oberfläche ein Rezeptormolekül mit dem Namen „Death Receptor 6“ (DR6). „Kommt eine Tumorzelle damit in Kontakt, aktiviert ein Protein auf ihrer Oberfläche mit dem Namen APP den DR6. Auf diese Weise beginnt der Angriff der Tumorzelle auf die Gefäßwand, der später mit der Nekroptose der Gefäßwandzelle endet“, sagt Strilic.

Die Max-Planck-Forscher zeigten anschließend, dass in gentechnisch veränderten Tieren, in denen der „Death Receptor 6“ ausgeschaltet worden war, weniger Nekroptose in den Endothelzellen vorkam und sich auch viel weniger Metastasen bildeten. „Dieser Effekt ließ sich auch nach einer Blockade von DR6 oder des Tumorzellproteins APP nachweisen und bestätigte somit unsere vorherigen Beobachtungen“, erläutert Strilic.

Noch nicht vollständig geklärt ist zurzeit, ob die Tumorzellen direkt durch die entstandene Lücke in der Gefäßwand hindurchwandern, oder ob es einen indirekten Effekt gibt: „Wir haben Hinweise darauf, dass vielmehr beim Absterben der Gefäßwandzelle Moleküle freigesetzt werden, die dann das umgebende Areal durchlässiger für die Tumorzelle machen“, so Offermanns.

“Dieser Mechanismus könnte ein Ansatzpunkt für Therapien sein, die die Bildung von Tumormetastasen verhindern können“, sagt Offermanns. Zunächst muss aber noch untersucht werden, ob eine Blockade von DR6 unerwünschte Nebenwirkungen auslöst. Auch ist noch zu klären, inwieweit sich die Beobachtungen auf den Menschen übertragen lassen.

Originalpublikation:
Strilic B, Yang L, Albarrán-Juárez J, Wachsmuth L, Han K, Müller UC, Pasparakis M, Offermanns S
(2016) Tumor cell-induced endothelial necroptosis via death receptor 6 promotes metastasis.
Nature; 3 August, 2016

Ansprechpartner:
Prof. Dr. Stefan Offermanns
Max-Planck-Institut für Herz- und Lungenforschung, Bad Nauheim
Telefon:+49 6032 705-1202Fax:+49 6032 705-1204
E-Mail:
stefan.offermanns@mpi-bn.mpg.de

Dr. Matthias Heil
Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Herz- und Lungenforschung, Bad Nauheim
Telefon:+49 6032 705-1705Fax:+49 6032 705-1704
E-Mail:
matthias.heil@mpi-bn.mpg.de

Weitere Informationen:

https://www.mpg.de/10679240/metastasen-dr6

Dr. Harald Rösch | Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V.

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Das Geheimnis der Sojabohne: Mainzer Forscher untersuchen Ölkörperchen in Sojabohnen
20.06.2018 | Max-Planck-Institut für Polymerforschung

nachricht Schlüsselmolekül des Alterns entdeckt
20.06.2018 | Deutsches Krebsforschungszentrum

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperaturgesteuerte Faser-Lichtquelle mit flüssigem Kern

Die moderne medizinische Bildgebung und neue spektroskopische Verfahren benötigen faserbasierte Lichtquellen, die breitbandiges Laserlicht im nahen und mittleren Infrarotbereich erzeugen. Wissenschaftlerinnen und Wissenschaftler des Leibniz-Instituts für Photonische Technologien Jena (Leibniz-IPHT) zeigen in einer aktuellen Veröffentlichung im renommierten Fachblatt Optica, dass sie die optischen Eigenschaften flüssigkeitsgefüllter Fasern und damit die Bandbreite des Laserlichts gezielt über die Umgebungstemperatur steuern können.

Das Besondere an den untersuchten Fasern ist ihr Kern. Er ist mit Kohlenstoffdisulfid gefüllt - einer flüssigen chemischen Verbindung mit hoher optischer...

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Revolution der Rohre

Forscher*innen des Instituts für Sensor- und Aktortechnik (ISAT) der Hochschule Coburg lassen Rohrleitungen, Schläuchen oder Behältern in Zukunft regelrecht Ohren wachsen. Sie entwickelten ein innovatives akustisches Messverfahren, um Ablagerungen in Rohren frühzeitig zu erkennen.

Rückstände in Abflussleitungen führen meist zu unerfreulichen Folgen. Ein besonderes Gefährdungspotential birgt der Biofilm – eine Schleimschicht, in der...

Im Focus: Überdosis Calcium

Nanokristalle beeinflussen die Differenzierung von Stammzellen während der Knochenbildung

Wissenschaftlerinnen und Wissenschaftler der Universitäten Freiburg und Basel haben einen Hauptschalter für die Regeneration von Knochengewebe identifiziert....

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

DFG unterstützt Kongresse und Tagungen im August 2018

20.06.2018 | Veranstaltungen

Hengstberger-Symposium zur Sternentstehung

19.06.2018 | Veranstaltungen

LymphomKompetenz KOMPAKT: Neues vom EHA2018

19.06.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

DFG unterstützt Kongresse und Tagungen im August 2018

20.06.2018 | Veranstaltungsnachrichten

Breitbandservices von DNS:NET erweitert

20.06.2018 | Unternehmensmeldung

Mit Parasiten infizierte Stichlinge beeinflussen Verhalten gesunder Artgenossen

20.06.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics