Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Schlummerndes Potential verletzter Nervenzellen

08.07.2009
Verletzte Nervenzellen im Finger wachsen wieder nach, im Rückenmark jedoch nicht. Woher kommt dieser Unterschied?

Wissenschaftler des Max-Planck-Instituts für Neurobiologie konnten mit einem internationalen Forscherteam nun zwei wichtige Details klären: Nervenzellen des Rückenmarks besitzen auch viele Wochen nach einer Verletzung noch die Fähigkeit zu wachsen.

Die Regeneration wird jedoch durch Narbengewebe verhindert, das nach der Verletzung entsteht. Mit diesem Wissen können Wissenschaftler nun nach Möglichkeiten suchen, um das Narbengewebe zu reduzieren und die entsprechenden Wachstumsmechanismen zu aktivieren. (Current Biology, Juni 2009)

Ein kleiner Schnitt in den Finger ist schmerzhaft, doch nicht weiter tragisch. Die Wunde ist innerhalb weniger Tage verheilt und der Körper hat verletzte Hautzellen, Muskelfasern, Gefäße und durchtrennte Nervenzellen wieder repariert. Warum versagen diese erstaunlichen Selbstheilungskräfte des Körpers jedoch, wenn das Zentrale Nervensystem (ZNS) verletzt wird - das Gehirn oder das Rückenmark?

Wachstum oder Stillstand
Wie gut eine verletzte Nervenzelle heilt hängt von ihrer Lage im Körper ab: Während sich Nervenzellen des ZNS von einer Verletzung kaum wieder erholen, wachsen Nerven außerhalb des ZNS, also im Peripheren Nervensystem (PNS), meist nach kurzer Zeit wieder nach. Wissenschaftler versuchen schon seit Jahren, diesen Unterschied zu erklären. Dieses Wissen könnte die Grundlage schaffen, um neue Behandlungsmethoden für Rückenmarksverletzungen zu entwickeln. Mittlerweile ist klar, dass es im Zentralen Nervensystem eine ganze Reihe von Substanzen gibt, die ein erneutes Auswachsen der Nervenzellen verhindern. Diese Substanzen fehlen im Peripheren Nervensystem, sodass einer Regeneration hier nichts im Wege steht.

Es gibt jedoch Ausnahmen. Die Fortsätze bestimmter Nervenzellen reichen sowohl ins ZNS als auch ins PNS. Werden diese Zellen verletzt, verhalten sie sich genau wie ihre Nachbarzellen: Im peripheren Bereich wachsen die Fortsätze nach kurzer Zeit wieder aus, im zentralen Bereich dagegen nicht. Wird dieselbe Zelle jedoch zuerst im peripheren und dann im zentralen Bereich verletzt, dann kann sie auch im ZNS wieder auswachsen - trotz der wachstumsfeindlichen Umgebung. Das zeigt, dass sich Nervenzellen im Prinzip auch im Zentralen Nervensystem von einer Verletzung erholen können. Werden die Fortsätze der Nervenzelle jedoch in der umgekehrten Reihenfolge verletzt, so findet kein Wachstum im ZNS statt. Diese interessante Tatsache blieb jedoch ohne Bedeutung für die Behandlung von Patienten - periphere Nervenzellen als vorbeugende Maßnahme zu verletzen, scheidet aus.

Schlummernde Wachstumsfähigkeiten
In den letzten 20 Jahren gingen Wissenschaftler also davon aus, dass ein erneutes Wachstum der Nervenzellen nach einer ZNS-Verletzung nur dann möglich ist, wenn die Zellen vorher durch eine periphere Verletzung 'stimuliert' wurden. Ob diese Wachstumsbremse jedoch von den Zellen selbst oder durch eine Substanz aus ihrer Umwelt ausgeht, blieb unklar. Bekannt ist, dass eine Verletzung der Zelle im peripheren Bereich Gene aktiviert, die mit dem Zellwachstum in Verbindung stehen. Diese Gene werden bei einem Schnitt im zentralen Bereich nicht aktiviert. "Nach einer peripheren Verletzung steht die Zelle sozusagen in 'Startposition' und kann gleich anfangen zu wachsen, wenn eine Verletzung im Zentralen Nervensystem auftritt", erklärt Frank Bradke, der mit seiner Nachwuchsgruppe am Max-Planck-Institut für Neurobiologie in Martinsried die Gründe der unterschiedlichen Wachstumsfähigkeiten untersucht. Zusammen mit einem internationalen Team konnten die Max-Planck Forscher nun erstmals zeigen, dass Nervenzellen des ZNS auch viele Wochen nach einer Verletzung noch die Fähigkeit besitzen wieder auszuwachsen. In einem einfachen aber effektiven Versuch nahmen die Wissenschaftler eine Nervenzelle, die bereits eine Verletzung im Bereich des ZNS aufwies. Diese Zelle schnitten sie dann auch im peripheren Bereich und aktivierten so die Wachstumsgene. Wurde die Zelle dann im ZNS erneut geschädigt, so wuchs die Zelle auch hier wieder aus - egal, wie viele Wochen zwischen der ersten und der zweiten ZNS-Verletzung lagen.
Narbengewebe als Barriere
Wenn also Nervenzellen auch längere Zeit nach einer Rückenmarksverletzung noch wachsen können, warum tun sie es dann nicht, wenn sie durch einen peripheren Schnitt stimuliert werden? Liegt es vielleicht an dem Narbengewebe, das sich fünf Tage nach einer Verletzung im Rückenmark bildet? Um dies zu überprüfen, zeigten die Wissenschaftler ganz besonderes Fingerspitzengefühl: Normalerweise werden selbst bei sehr kleinen Verletzungen hunderte Nervenzellen durchtrennt. Mithilfe eines Zwei-Photonen-Lasers gelang es den Neurobiologen jedoch, den Fortsatz einer einzelnen Nervenzelle zu durchschneiden. An dieser winzigen Verletzung bildete sich kein Narbengewebe und die Nervenzelle wuchs nach einigen Tagen tatsächlich wieder aus.
Wichtige Grundlage
"Auch wenn wir von hier aus natürlich nicht gleich zur Entwicklung neuer Therapien übergehen können, so liefern diese Ergebnisse eine wichtige Grundlage für nachfolgende Studien", sagt Bradke. "Zum einen ist nun klar, dass verletzte Nervenzellen auch nach langer Zeit noch auswachsen können, wenn sie richtig stimuliert werden. Zum anderen wissen wir nun, dass eine Aktivierung der Wachstumsgene allein nicht ausreicht, um Nervenzellen des Zentralen Nervensystems wieder wachsen zu lassen. Für eine erfolgreiche Regeneration muss auch die Ausbildung des Narbengewebes verhindert oder zumindest reduziert werden." Mit diesem Wissen können nun Methoden entwickelt werden, die die positiven Geneffekte verstärken und das Narbengewebe verringern.
Originalveröffentlichung:
Ylera B, Ertürk A, Hellaf F, Nadrigny F, Hurtado A, Tahirovic S, Oudega M, Kirchhoff F, Bradke F (2009): Chronically CNS-injured adult sensory neurons gain regenerative competence upon a lesion of their peripheral axon. Current Biology 19: 930-936
Kontakt:
Dr. Stefanie Merker
Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Neurobiologie
Am Klopferspitz 18
82152 Martinsried
Tel.: 089 8578 3514
Email: merker@neuro.mpg.de

Dr. Stefanie Merker | Max-Planck-Institut
Weitere Informationen:
http://www.neuro.mpg.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Maßgeschneiderte Nanopartikel gegen Krebs gesucht
29.06.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Elektrisch leitende Hülle für Bakterien
29.06.2017 | Gesellschaft Deutscher Chemiker e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wellen schlagen

Computerwissenschaftler verwenden die Theorie von Wellenpaketen, um realistische und detaillierte Simulationen von Wasserwellen in Echtzeit zu erstellen. Ihre Ergebnisse werden auf der diesjährigen SIGGRAPH Konferenz vorgestellt.

Denkt man an einen See, einen Fluss oder an das Meer, so sieht man vor sich, wie sich das Wasser kräuselt, wie Wellen gegen die Felsen schlagen, wie Bugwellen...

Im Focus: Making Waves

Computer scientists use wave packet theory to develop realistic, detailed water wave simulations in real time. Their results will be presented at this year’s SIGGRAPH conference.

Think about the last time you were at a lake, river, or the ocean. Remember the ripples of the water, the waves crashing against the rocks, the wake following...

Im Focus: Schnelles und umweltschonendes Laserstrukturieren von Werkzeugen zur Folienherstellung

Kosteneffizienz und hohe Produktivität ohne dabei die Umwelt zu belasten: Im EU-Projekt »PoLaRoll« entwickelt das Fraunhofer-Institut für Produktionstechnologie IPT aus Aachen gemeinsam mit dem Oberhausener Fraunhofer-Institut für Umwelt-, Sicherheit- und Energietechnik UMSICHT und sechs Industriepartnern ein Modul zur direkten Laser-Mikrostrukturierung in einem Rolle-zu-Rolle-Verfahren. Ziel ist es, mit Hilfe dieses Systems eine siebartige Metallfolie als Demonstrator zu fertigen, die zum Sonnenschutz von Glasfassaden verwendet wird: Durch ihre besondere Geometrie wird die Sonneneinstrahlung reduziert, woraus sich ein verminderter Energieaufwand für Kühlung und Belüftung ergibt.

Das Fraunhofer IPT ist im Projekt »PoLaRoll« für die Prozessentwicklung der Laserstrukturierung sowie für die Mess- und Systemtechnik zuständig. Von den...

Im Focus: Das Auto lernt vorauszudenken

Ein neues Christian Doppler Labor an der TU Wien beschäftigt sich mit der Regelung und Überwachung von Antriebssystemen – mit Unterstützung des Wissenschaftsministeriums und von AVL List.

Wer ein Auto fährt, trifft ständig Entscheidungen: Man gibt Gas, bremst und dreht am Lenkrad. Doch zusätzlich muss auch das Fahrzeug selbst ununterbrochen...

Im Focus: Vorbild Delfinhaut: Elastisches Material vermindert Reibungswiderstand bei Schiffen

Für eine elegante und ökonomische Fortbewegung im Wasser geben Delfine den Wissenschaftlern ein exzellentes Vorbild. Die flinken Säuger erzielen erstaunliche Schwimmleistungen, deren Ursachen einerseits in der Körperform und andererseits in den elastischen Eigenschaften ihrer Haut zu finden sind. Letzteres Phänomen ist bereits seit Mitte des vorigen Jahrhunderts bekannt, konnte aber bislang nicht erfolgreich auf technische Anwendungen übertragen werden. Experten des Fraunhofer IFAM und der HSVA GmbH haben nun gemeinsam mit zwei weiteren Forschungspartnern eine Oberflächenbeschichtung entwickelt, die ähnlich wie die Delfinhaut den Strömungswiderstand im Wasser messbar verringert.

Delfine haben eine glatte Haut mit einer darunter liegenden dicken, nachgiebigen Speckschicht. Diese speziellen Hauteigenschaften führen zu einer signifikanten...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Marine Pilze – hervorragende Quellen für neue marine Wirkstoffe?

28.06.2017 | Veranstaltungen

Willkommen an Bord!

28.06.2017 | Veranstaltungen

Internationale Fachkonferenz IEEE ICDCM - Lokale Gleichstromnetze bereichern die Energieversorgung

27.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Maßgeschneiderte Nanopartikel gegen Krebs gesucht

29.06.2017 | Biowissenschaften Chemie

Wolken über der Wetterküche: Die Azoren im Fokus eines internationalen Forschungsteams

29.06.2017 | Geowissenschaften

Wellen schlagen

29.06.2017 | Informationstechnologie