Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Schlüsselmechanismus der pflanzlichen Immunität

19.12.2012
Schutz vor Viren, Bakterien und Pilzen – Gießener und US-amerikanische Biologen schaffen Ansatzpunkte für einen umweltverträglicheren Pflanzenschutz

Wie schützen Pflanzen sich vor Viren, Bakterien und Pilzen?

Gießener Biologinnen und Biologen sind der Lösung dieses Rätsels einen großen Schritt nähergekommen. Die Arbeitsgruppe von Prof. Dr. Karl-Heinz Kogel (Interdisziplinäres Forschungszentrum für biowissenschaftliche Grundlagen der Umweltsicherung (IFZ) der Justus-Liebig-Universität Gießen) ist gemeinsam mit der Gruppe um den Molekularbiologen Prof. Daniel Klessig von der US-amerikanischen Cornell-University (Boyce Thompson Institute for Plant Research) überraschend auf einen neuen molekularen Mechanismus gestoßen, der Pflanzen gegenüber einem breiten Spektrum von parasitären Mikroorganismen schützt. Die Ergebnisse der Untersuchungen, die langfristig weltweit zu verbesserten Ernteerträgen führen können, wurden nun im Fachblatt „Nature Communication” veröffentlicht.

Die Wissenschaftlerinnen und Wissenschaftler entdeckten, dass der Befall mit Mikroorganismen den Transfer eines Proteins mit dem Namen CRT1 bewirkt. Das Protein wird von der äußeren Zellperiphere in den pflanzlichen Zellkern transportiert und führt dort zu einer erhöhten Widerstandskraft der betroffenen Pflanze. Bei CRT1 handelt es sich den Erkenntnisssen zufolge um ein Enzym, das sich in Zellkernen an die DNA bindet und diese verändern kann. Dieser Prozess führt offenbar zu einer generellen Aktivierung des pflanzlichen Immunsystems.
Infektionen mit Viren, Bakterien und Pilzen reduzieren den Ernteertrag weltweit jährlich um mehr als 30 Prozent, wodurch immer mehr chemische Pflanzenschutzmittel zur Anwendung kommen. Aktuell scheint sich die Bedrohung der Pflanzenerträge durch den einsetzenden Klimawandel noch zu verschärfen, weil neuartige Krankheiten beobachtet werden. Große Hoffnung liegt in der Züchtung neuer resistenter Sorten; dazu kann die neue Entdeckung in einem noch kaum abschätzbaren Maße beitragen.

„Wir sind vor allem begeistert davon, wie intensiv und erfolgreich die erst zweijährige Zusammenarbeit mit den amerikanischen Kolleginnen und Kollegen der Cornell University ist, sagt Prof. Kogel. „Der wichtige Gießener Beitrag zu der neuen Entdeckung liegt insbesondere darin, dass wir mit unserer langjährigen Kompetenz in der Zellbiologie zeigen konnten, dass CRT1 in den Zellkern verschoben wird.“

Publikation:
Kang, H-G. et al.: CRT1 is a nuclear-translocated MORC endonuclease that participates in multiple levels of plant immunity. Nat. Commun. Online veröffentlicht am 18. Dezember 2012.

doi: 10.1038/ncomms2279.

Kontakt:
Prof. Dr. Karl-Heinz Kogel, Institut für Phytopathologie und Angewandte Zoologie
Interdisziplinäres Forschungszentrum für biowissenschaftliche Grundlagen
der Umweltsicherung (IFZ)
Heinrich-Buff-Ring 26-32, 35392 Gießen
Telefon: 0641 99-37490

Lisa Dittrich | idw
Weitere Informationen:
http://www.uni-giessen.de/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress
23.02.2018 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

nachricht Wie Zellen unterschiedlich auf Stress reagieren
23.02.2018 | Max-Planck-Institut für molekulare Genetik

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics