Ein Schlüssel zur Welt unseres geistigen Auges

Im Alltag sehen wir häufig wie ein Objekt ein anderes verdeckt, wie zum Beispiel hier der Zweig eines Strauches einen anderen (roter Kasten). Das Bild der beiden Objekte gelangt als eine Art Abbild ins Gehirn indem spezielle Nervenzellen mit hoher Aktivität auf Bildmerkmale reagieren. Um das Bild zu verstehen, muss das Gehirn es in seine ursprünglichen Komponenten (hier die beiden Zweige) zerlegen. Ein neues mathematisches Model dieser Zerlegung sagt nun, dass es viele Nervenzelle geben muss die auf rundliche Merkmale reagieren um Verdeckungen zu verstehen (Merkmal „neu“ von Nervenzellen). Diese Art Zellen wird seit einiger Zeit beobachtet, wurde aber nie mit visuellen Verdeckungen in Verbindung gesetzt.<br><br><br>Bild: Jörg Lücke / Bornschein J. et al. (2013): Are V1 simple cells optimized for visual occlusions? A comparative study. PLoS Computational Biology 9(6): e1003062.<br>

Forschern in Frankfurt sind nun der Funktionsweise dieses „geistigen Auges“ auf die Schliche gekommen, indem sie mithilfe eines neuen mathematischen Modells das Verhalten von Gehirnzellen genauer erklären konnten.

Dieses Modell berücksichtigt, im Gegensatz zu bisherigen Modellen, Verdeckungen zwischen Objekten in der Welt. Die Wissenschaftler zeigten damit, dass unsere Gehirnaktivität sehr viel direkter mit Eigenschaften der äußeren Welt verbunden ist als bisher angenommen wurde.

Im Jahr 1981 erhielten die Neurowissenschaftler Hubel und Wiesel den Nobelpreis für die Entdeckung von Gehirnzellen, die mit hoher Aktivität auf Objektkanten in Bildern reagieren. Dies zeigte, dass unsere Gehirnaktivität mit Merkmalen wie Kanten in Bildern in Verbindung steht. Später konnte man mit mathematischen Modellen erklären, warum Gehirnzellen auf bestimmte Objektmerkmale mit starkem Feuern reagieren.

Diese Modelle beschreiben, wie das Gehirn ein internes Bild generieren kann – allerdings spiegeln sie die tatsächliche Struktur von natürlichen Bildern bisher nur sehr vereinfacht wieder. So ignorieren sie etwa Verdeckungen zwischen Objekten, wie sie in der sichtbaren Welt allgegenwärtig sind. Eine bestimmte Art von Nervenzellen, die man erst seit wenigen Jahren kennt, lässt sich aber nur schwer mit den gängigen vereinfachten Modellen erklären.

Forscher des Bernstein Fokus Neurotechnologie Frankfurt, der Goethe-Universität Frankfurt und des Frankfurt Institute for Advanced Studies haben nun gezeigt, dass sich das Verhalten dieser neuen Gehirnzellen besser in neuronalen Modellen beschreiben lässt, wenn weitere Informationen in sie einfließen. In ihrer Studie verglichen sie herkömmliche Modelle mit einem, das Verdeckungen zwischen Objekten berücksichtigt. Dabei zeigte sich: Das neue Beschreibungsmodell sagte im erhöhten Maße neuronale Verhaltensweisen vorher, welche diese spezielle Nervenzellart besitzt. Das Ergebnis gibt auch einen Hinweis auf die Funktion der Neurone. „Es gibt noch andere mögliche Erklärungen warum es solche Zellen in unserem Gehirn gibt“, sagt Jörg Lücke, „aber unsere Ergebnisse legen die Kodierung von Verdeckungen als plausibelste Erklärung nahe.“

Die beteiligten Forscher glauben, dass die neu gewonnen Erkenntnisse auch die Entwicklung von computergestützten Bild-Analysetechniken entscheidend voranbringen können. „Wir wissen noch sehr wenig darüber, wie unser Gehirn Bilder versteht und interpretiert. Gleichzeitig ist unser Gehirn, und übrigens auch die Gehirne von Tieren, im Verstehen von Bildern heutigen Computerprogrammen weit überlegen“, sagt Lücke. Eine Verbesserung des sogenannten Computer-Sehens hätte vielfältige Anwendungsmöglichkeiten. Eine Anwendung mit der sich Lücke derzeit zusammen mit Kollegen beschäftigt ist die Analyse von Mikroskopie-Bildern zur automatischen Krebserkennung.

Die Studie wurde gefördert von der Deutschen Forschungsgemeinschaft (DFG) und des Bernstein Fokus Neurotechnologie Frankfurt. Des Weiteren wurde das Projekt unterstützt vom Honda Research Institute Europe.

Der Bernstein Fokus Neurotechnologie Frankfurt ist Teil des Nationalen Bernstein Netzwerks Computational Neuroscience. Seit 2004 fördert das Bundesministerium für Bildung und Forschung (BMBF) mit dieser Initiative die neue Forschungsdisziplin Computational Neuroscience mit über 170 Mio. €. Das Netzwerk ist benannt nach dem deutschen Physiologen Julius Bernstein (1835-1917).

Weitere Informationen erteilen Ihnen gerne:
Dr. Jörg Lücke
Bernstein Fokus Neurotechnologie Frankfurt und
Frankfurt Institute for Advanced Studies
Goethe-Universität Frankfurt
Ruth-Moufang-Straße 1
60438 Frankfurt am Main
eMail: luecke@fias.uni-frankfurt.de
Tel: +49 (0)69 798 47509

Originalpublikation:
J. Bornschein, M. Henniges and J. Lücke (2013): Are V1 simple cells optimized for visual occlusions? A comparative study. PLoS Computational Biology 9(6): e1003062.

doi:10.1371/journal.pcbi.1003062

Weitere Informationen:

http://fias.uni-frankfurt.de/de/cnml Webseite des Labors
http://www.bfnt-frankfurt.de Bernstein Fokus Neurotechnologie Frankfurt
http://www.uni-frankfurt.de Goethe Universität Frankfurt
http://wwww.nncn.de Nationales Bernstein Netzwerk Computational Neuroscience

Media Contact

Mareike Kardinal idw

Weitere Informationen:

http://wwww.nncn.de

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Neue universelle lichtbasierte Technik zur Kontrolle der Talpolarisation

Ein internationales Forscherteam berichtet in Nature über eine neue Methode, mit der zum ersten Mal die Talpolarisation in zentrosymmetrischen Bulk-Materialien auf eine nicht materialspezifische Weise erreicht wird. Diese „universelle Technik“…

Tumorzellen hebeln das Immunsystem früh aus

Neu entdeckter Mechanismus könnte Krebs-Immuntherapien deutlich verbessern. Tumore verhindern aktiv, dass sich Immunantworten durch sogenannte zytotoxische T-Zellen bilden, die den Krebs bekämpfen könnten. Wie das genau geschieht, beschreiben jetzt erstmals…

Immunzellen in den Startlöchern: „Allzeit bereit“ ist harte Arbeit

Wenn Krankheitserreger in den Körper eindringen, muss das Immunsystem sofort reagieren und eine Infektion verhindern oder eindämmen. Doch wie halten sich unsere Abwehrzellen bereit, wenn kein Angreifer in Sicht ist?…

Partner & Förderer