Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ein Schlüssel zur Welt unseres geistigen Auges

07.06.2013
Sehen ist ein konstruktiver Prozess. Die scheinbar perfekten Bilder, die wir in jedem Augenblick wahrnehmen, generiert unser Gehirn mit einem inneren Abbild der äußeren sichtbaren Welt.

Forschern in Frankfurt sind nun der Funktionsweise dieses "geistigen Auges" auf die Schliche gekommen, indem sie mithilfe eines neuen mathematischen Modells das Verhalten von Gehirnzellen genauer erklären konnten.


Im Alltag sehen wir häufig wie ein Objekt ein anderes verdeckt, wie zum Beispiel hier der Zweig eines Strauches einen anderen (roter Kasten). Das Bild der beiden Objekte gelangt als eine Art Abbild ins Gehirn indem spezielle Nervenzellen mit hoher Aktivität auf Bildmerkmale reagieren. Um das Bild zu verstehen, muss das Gehirn es in seine ursprünglichen Komponenten (hier die beiden Zweige) zerlegen. Ein neues mathematisches Model dieser Zerlegung sagt nun, dass es viele Nervenzelle geben muss die auf rundliche Merkmale reagieren um Verdeckungen zu verstehen (Merkmal „neu“ von Nervenzellen). Diese Art Zellen wird seit einiger Zeit beobachtet, wurde aber nie mit visuellen Verdeckungen in Verbindung gesetzt.


Bild: Jörg Lücke / Bornschein J. et al. (2013): Are V1 simple cells optimized for visual occlusions? A comparative study. PLoS Computational Biology 9(6): e1003062.

Dieses Modell berücksichtigt, im Gegensatz zu bisherigen Modellen, Verdeckungen zwischen Objekten in der Welt. Die Wissenschaftler zeigten damit, dass unsere Gehirnaktivität sehr viel direkter mit Eigenschaften der äußeren Welt verbunden ist als bisher angenommen wurde.

Im Jahr 1981 erhielten die Neurowissenschaftler Hubel und Wiesel den Nobelpreis für die Entdeckung von Gehirnzellen, die mit hoher Aktivität auf Objektkanten in Bildern reagieren. Dies zeigte, dass unsere Gehirnaktivität mit Merkmalen wie Kanten in Bildern in Verbindung steht. Später konnte man mit mathematischen Modellen erklären, warum Gehirnzellen auf bestimmte Objektmerkmale mit starkem Feuern reagieren.

Diese Modelle beschreiben, wie das Gehirn ein internes Bild generieren kann – allerdings spiegeln sie die tatsächliche Struktur von natürlichen Bildern bisher nur sehr vereinfacht wieder. So ignorieren sie etwa Verdeckungen zwischen Objekten, wie sie in der sichtbaren Welt allgegenwärtig sind. Eine bestimmte Art von Nervenzellen, die man erst seit wenigen Jahren kennt, lässt sich aber nur schwer mit den gängigen vereinfachten Modellen erklären.

Forscher des Bernstein Fokus Neurotechnologie Frankfurt, der Goethe-Universität Frankfurt und des Frankfurt Institute for Advanced Studies haben nun gezeigt, dass sich das Verhalten dieser neuen Gehirnzellen besser in neuronalen Modellen beschreiben lässt, wenn weitere Informationen in sie einfließen. In ihrer Studie verglichen sie herkömmliche Modelle mit einem, das Verdeckungen zwischen Objekten berücksichtigt. Dabei zeigte sich: Das neue Beschreibungsmodell sagte im erhöhten Maße neuronale Verhaltensweisen vorher, welche diese spezielle Nervenzellart besitzt. Das Ergebnis gibt auch einen Hinweis auf die Funktion der Neurone. "Es gibt noch andere mögliche Erklärungen warum es solche Zellen in unserem Gehirn gibt", sagt Jörg Lücke, "aber unsere Ergebnisse legen die Kodierung von Verdeckungen als plausibelste Erklärung nahe."

Die beteiligten Forscher glauben, dass die neu gewonnen Erkenntnisse auch die Entwicklung von computergestützten Bild-Analysetechniken entscheidend voranbringen können. "Wir wissen noch sehr wenig darüber, wie unser Gehirn Bilder versteht und interpretiert. Gleichzeitig ist unser Gehirn, und übrigens auch die Gehirne von Tieren, im Verstehen von Bildern heutigen Computerprogrammen weit überlegen", sagt Lücke. Eine Verbesserung des sogenannten Computer-Sehens hätte vielfältige Anwendungsmöglichkeiten. Eine Anwendung mit der sich Lücke derzeit zusammen mit Kollegen beschäftigt ist die Analyse von Mikroskopie-Bildern zur automatischen Krebserkennung.

Die Studie wurde gefördert von der Deutschen Forschungsgemeinschaft (DFG) und des Bernstein Fokus Neurotechnologie Frankfurt. Des Weiteren wurde das Projekt unterstützt vom Honda Research Institute Europe.

Der Bernstein Fokus Neurotechnologie Frankfurt ist Teil des Nationalen Bernstein Netzwerks Computational Neuroscience. Seit 2004 fördert das Bundesministerium für Bildung und Forschung (BMBF) mit dieser Initiative die neue Forschungsdisziplin Computational Neuroscience mit über 170 Mio. €. Das Netzwerk ist benannt nach dem deutschen Physiologen Julius Bernstein (1835-1917).

Weitere Informationen erteilen Ihnen gerne:
Dr. Jörg Lücke
Bernstein Fokus Neurotechnologie Frankfurt und
Frankfurt Institute for Advanced Studies
Goethe-Universität Frankfurt
Ruth-Moufang-Straße 1
60438 Frankfurt am Main
eMail: luecke@fias.uni-frankfurt.de
Tel: +49 (0)69 798 47509

Originalpublikation:
J. Bornschein, M. Henniges and J. Lücke (2013): Are V1 simple cells optimized for visual occlusions? A comparative study. PLoS Computational Biology 9(6): e1003062.

doi:10.1371/journal.pcbi.1003062

Weitere Informationen:

http://fias.uni-frankfurt.de/de/cnml Webseite des Labors
http://www.bfnt-frankfurt.de Bernstein Fokus Neurotechnologie Frankfurt
http://www.uni-frankfurt.de Goethe Universität Frankfurt
http://wwww.nncn.de Nationales Bernstein Netzwerk Computational Neuroscience

Mareike Kardinal | idw
Weitere Informationen:
http://wwww.nncn.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Krebsdiagnostik: Pinkeln statt Piksen?
25.05.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Kugelmühlen statt Lösungsmittel: Nanographene mit Mechanochemie
25.05.2018 | Technische Universität Dresden

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Starke IT-Sicherheit für das Auto der Zukunft – Forschungsverbund entwickelt neue Ansätze

Je mehr die Elektronik Autos lenkt, beschleunigt und bremst, desto wichtiger wird der Schutz vor Cyber-Angriffen. Deshalb erarbeiten 15 Partner aus Industrie und Wissenschaft in den kommenden drei Jahren neue Ansätze für die IT-Sicherheit im selbstfahrenden Auto. Das Verbundvorhaben unter dem Namen „Security For Connected, Autonomous Cars (SecForCARs) wird durch das Bundesministerium für Bildung und Forschung mit 7,2 Millionen Euro gefördert. Infineon leitet das Projekt.

Bereits heute bieten Fahrzeuge vielfältige Kommunikationsschnittstellen und immer mehr automatisierte Fahrfunktionen, wie beispielsweise Abstands- und...

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Mit Hilfe molekularer Schalter lassen sich künftig neuartige Bauelemente entwickeln

Einem Forscherteam unter Führung von Physikern der Technischen Universität München (TUM) ist es gelungen, spezielle Moleküle mit einer angelegten Spannung zwischen zwei strukturell unterschiedlichen Zuständen hin und her zu schalten. Derartige Nano-Schalter könnten Basis für neuartige Bauelemente sein, die auf Silizium basierende Komponenten durch organische Moleküle ersetzen.

Die Entwicklung neuer elektronischer Technologien fordert eine ständige Verkleinerung funktioneller Komponenten. Physikern der TU München ist es im Rahmen...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: GRACE Follow-On erfolgreich gestartet: Das Satelliten-Tandem dokumentiert den globalen Wandel

Die Satellitenmission GRACE-FO ist gestartet. Am 22. Mai um 21.47 Uhr (MESZ) hoben die beiden Satelliten des GFZ und der NASA an Bord einer Falcon-9-Rakete von der Vandenberg Air Force Base (Kalifornien) ab und wurden in eine polare Umlaufbahn gebracht. Dort nehmen sie in den kommenden Monaten ihre endgültige Position ein. Die NASA meldete 30 Minuten später, dass der Kontakt zu den Satelliten in ihrem Zielorbit erfolgreich hergestellt wurde. GRACE Follow-On wird das Erdschwerefeld und dessen räumliche und zeitliche Variationen sehr genau vermessen. Sie ermöglicht damit präzise Aussagen zum globalen Wandel, insbesondere zu Änderungen im Wasserhaushalt, etwa dem Verlust von Eismassen.

Potsdam, 22. Mai 2018: Die deutsch-amerikanische Satellitenmission GRACE-FO (Gravity Recovery And Climate Experiment Follow On) ist erfolgreich gestartet. Am...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Im Fokus: Klimaangepasste Pflanzen

25.05.2018 | Veranstaltungen

Größter Astronomie-Kongress kommt nach Wien

24.05.2018 | Veranstaltungen

22. Business Forum Qualität: Vom Smart Device bis zum Digital Twin

22.05.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Berufsausbildung mit Zukunft

25.05.2018 | Unternehmensmeldung

Untersuchung der Zellmembran: Forscher entwickeln Stoff, der wichtigen Membranbestandteil nachahmt

25.05.2018 | Interdisziplinäre Forschung

Starke IT-Sicherheit für das Auto der Zukunft – Forschungsverbund entwickelt neue Ansätze

25.05.2018 | Informationstechnologie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics