Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ein Schlüssel zur Welt unseres geistigen Auges

07.06.2013
Sehen ist ein konstruktiver Prozess. Die scheinbar perfekten Bilder, die wir in jedem Augenblick wahrnehmen, generiert unser Gehirn mit einem inneren Abbild der äußeren sichtbaren Welt.

Forschern in Frankfurt sind nun der Funktionsweise dieses "geistigen Auges" auf die Schliche gekommen, indem sie mithilfe eines neuen mathematischen Modells das Verhalten von Gehirnzellen genauer erklären konnten.


Im Alltag sehen wir häufig wie ein Objekt ein anderes verdeckt, wie zum Beispiel hier der Zweig eines Strauches einen anderen (roter Kasten). Das Bild der beiden Objekte gelangt als eine Art Abbild ins Gehirn indem spezielle Nervenzellen mit hoher Aktivität auf Bildmerkmale reagieren. Um das Bild zu verstehen, muss das Gehirn es in seine ursprünglichen Komponenten (hier die beiden Zweige) zerlegen. Ein neues mathematisches Model dieser Zerlegung sagt nun, dass es viele Nervenzelle geben muss die auf rundliche Merkmale reagieren um Verdeckungen zu verstehen (Merkmal „neu“ von Nervenzellen). Diese Art Zellen wird seit einiger Zeit beobachtet, wurde aber nie mit visuellen Verdeckungen in Verbindung gesetzt.


Bild: Jörg Lücke / Bornschein J. et al. (2013): Are V1 simple cells optimized for visual occlusions? A comparative study. PLoS Computational Biology 9(6): e1003062.

Dieses Modell berücksichtigt, im Gegensatz zu bisherigen Modellen, Verdeckungen zwischen Objekten in der Welt. Die Wissenschaftler zeigten damit, dass unsere Gehirnaktivität sehr viel direkter mit Eigenschaften der äußeren Welt verbunden ist als bisher angenommen wurde.

Im Jahr 1981 erhielten die Neurowissenschaftler Hubel und Wiesel den Nobelpreis für die Entdeckung von Gehirnzellen, die mit hoher Aktivität auf Objektkanten in Bildern reagieren. Dies zeigte, dass unsere Gehirnaktivität mit Merkmalen wie Kanten in Bildern in Verbindung steht. Später konnte man mit mathematischen Modellen erklären, warum Gehirnzellen auf bestimmte Objektmerkmale mit starkem Feuern reagieren.

Diese Modelle beschreiben, wie das Gehirn ein internes Bild generieren kann – allerdings spiegeln sie die tatsächliche Struktur von natürlichen Bildern bisher nur sehr vereinfacht wieder. So ignorieren sie etwa Verdeckungen zwischen Objekten, wie sie in der sichtbaren Welt allgegenwärtig sind. Eine bestimmte Art von Nervenzellen, die man erst seit wenigen Jahren kennt, lässt sich aber nur schwer mit den gängigen vereinfachten Modellen erklären.

Forscher des Bernstein Fokus Neurotechnologie Frankfurt, der Goethe-Universität Frankfurt und des Frankfurt Institute for Advanced Studies haben nun gezeigt, dass sich das Verhalten dieser neuen Gehirnzellen besser in neuronalen Modellen beschreiben lässt, wenn weitere Informationen in sie einfließen. In ihrer Studie verglichen sie herkömmliche Modelle mit einem, das Verdeckungen zwischen Objekten berücksichtigt. Dabei zeigte sich: Das neue Beschreibungsmodell sagte im erhöhten Maße neuronale Verhaltensweisen vorher, welche diese spezielle Nervenzellart besitzt. Das Ergebnis gibt auch einen Hinweis auf die Funktion der Neurone. "Es gibt noch andere mögliche Erklärungen warum es solche Zellen in unserem Gehirn gibt", sagt Jörg Lücke, "aber unsere Ergebnisse legen die Kodierung von Verdeckungen als plausibelste Erklärung nahe."

Die beteiligten Forscher glauben, dass die neu gewonnen Erkenntnisse auch die Entwicklung von computergestützten Bild-Analysetechniken entscheidend voranbringen können. "Wir wissen noch sehr wenig darüber, wie unser Gehirn Bilder versteht und interpretiert. Gleichzeitig ist unser Gehirn, und übrigens auch die Gehirne von Tieren, im Verstehen von Bildern heutigen Computerprogrammen weit überlegen", sagt Lücke. Eine Verbesserung des sogenannten Computer-Sehens hätte vielfältige Anwendungsmöglichkeiten. Eine Anwendung mit der sich Lücke derzeit zusammen mit Kollegen beschäftigt ist die Analyse von Mikroskopie-Bildern zur automatischen Krebserkennung.

Die Studie wurde gefördert von der Deutschen Forschungsgemeinschaft (DFG) und des Bernstein Fokus Neurotechnologie Frankfurt. Des Weiteren wurde das Projekt unterstützt vom Honda Research Institute Europe.

Der Bernstein Fokus Neurotechnologie Frankfurt ist Teil des Nationalen Bernstein Netzwerks Computational Neuroscience. Seit 2004 fördert das Bundesministerium für Bildung und Forschung (BMBF) mit dieser Initiative die neue Forschungsdisziplin Computational Neuroscience mit über 170 Mio. €. Das Netzwerk ist benannt nach dem deutschen Physiologen Julius Bernstein (1835-1917).

Weitere Informationen erteilen Ihnen gerne:
Dr. Jörg Lücke
Bernstein Fokus Neurotechnologie Frankfurt und
Frankfurt Institute for Advanced Studies
Goethe-Universität Frankfurt
Ruth-Moufang-Straße 1
60438 Frankfurt am Main
eMail: luecke@fias.uni-frankfurt.de
Tel: +49 (0)69 798 47509

Originalpublikation:
J. Bornschein, M. Henniges and J. Lücke (2013): Are V1 simple cells optimized for visual occlusions? A comparative study. PLoS Computational Biology 9(6): e1003062.

doi:10.1371/journal.pcbi.1003062

Weitere Informationen:

http://fias.uni-frankfurt.de/de/cnml Webseite des Labors
http://www.bfnt-frankfurt.de Bernstein Fokus Neurotechnologie Frankfurt
http://www.uni-frankfurt.de Goethe Universität Frankfurt
http://wwww.nncn.de Nationales Bernstein Netzwerk Computational Neuroscience

Mareike Kardinal | idw
Weitere Informationen:
http://wwww.nncn.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Neue Arten in der Nordsee-Kita
05.12.2016 | Senckenberg Forschungsinstitut und Naturmuseen

nachricht Alter beeinflusst den Mikronährstoffgehalt im Blut
05.12.2016 | Deutsches Institut für Ernährungsforschung Potsdam-Rehbrücke

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Im Focus: Durchbruch in der Diabetesforschung: Pankreaszellen produzieren Insulin durch Malariamedikament

Artemisinine, eine zugelassene Wirkstoffgruppe gegen Malaria, wandelt Glukagon-produzierende Alpha-Zellen der Bauchspeicheldrüse (Pankreas) in insulinproduzierende Zellen um – genau die Zellen, die bei Typ-1-Diabetes geschädigt sind. Das haben Forscher des CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften im Rahmen einer internationalen Zusammenarbeit mit modernsten Einzelzell-Analysen herausgefunden. Ihre bahnbrechenden Ergebnisse werden in Cell publiziert und liefern eine vielversprechende Grundlage für neue Therapien gegen Typ-1 Diabetes.

Seit einigen Jahren hatten sich Forscher an diesem Kunstgriff versucht, der eine simple und elegante Heilung des Typ-1 Diabetes versprach: Die vom eigenen...

Im Focus: Makromoleküle: Mit Licht zu Präzisionspolymeren

Chemikern am Karlsruher Institut für Technologie (KIT) ist es gelungen, den Aufbau von Präzisionspolymeren durch lichtgetriebene chemische Reaktionen gezielt zu steuern. Das Verfahren ermöglicht die genaue, geplante Platzierung der Kettengliedern, den Monomeren, entlang von Polymerketten einheitlicher Länge. Die präzise aufgebauten Makromoleküle bilden festgelegte Eigenschaften aus und eignen sich möglicherweise als Informationsspeicher oder synthetische Biomoleküle. Über die neuartige Synthesereaktion berichten die Wissenschaftler nun in der Open Access Publikation Nature Communications. (DOI: 10.1038/NCOMMS13672)

Chemische Reaktionen lassen sich durch Einwirken von Licht bei Zimmertemperatur auslösen. Die Forscher am KIT nutzen diesen Effekt, um unter Licht die...

Im Focus: Neuer Sensor: Was im Inneren von Schneelawinen vor sich geht

Ein neuer Radarsensor erlaubt Einblicke in die inneren Vorgänge von Schneelawinen. Entwickelt haben ihn Ingenieure der Ruhr-Universität Bochum (RUB) um Dr. Christoph Baer und Timo Jaeschke gemeinsam mit Kollegen aus Innsbruck und Davos. Das Messsystem ist bereits an einem Testhang im Wallis installiert, wo das Schweizer Institut für Schnee- und Lawinenforschung im Winter 2016/17 Messungen damit durchführen möchte.

Die erhobenen Daten sollen in Simulationen einfließen, die das komplexe Geschehen im Inneren von Lawinen detailliert nachbilden. „Was genau passiert, wenn sich...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

Die Perspektiven der Genom-Editierung in der Landwirtschaft

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Forscher finden «Krebssignatur» in Proteinen

05.12.2016 | Biowissenschaften Chemie

Wichtiger Prozess für Wolkenbildung aus Gasen entschlüsselt

05.12.2016 | Geowissenschaften

Frühwarnsignale für Seen halten nicht, was sie versprechen

05.12.2016 | Ökologie Umwelt- Naturschutz