Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ein Schlüssel-Gen für die Sehfähigkeit: AP2gamma steuert die Bildung von Nervenzellen in der Großhirnrinde

19.10.2009
Stammzellforscher um Prof. Dr. Magdalena Götz vom Helmholtz Zentrum München haben einen molekularen Faktor gefunden, der beeinflusst, wie sich die Großhirnrinde von Aufbau und Funktion her in verschiedene Bereiche und Schichten gliedert.

Die Wissenschaftler untersuchten die Wirkung des Transkriptionsfaktors AP2gamma auf die Reifung von Vorläuferzellen zu Nervenzellen während der Embryonalentwicklung von Mäusen. Dabei zeigte sich, dass AP2gamma für die Ausbildung einer funktionierenden Sehrinde der Tiere unbedingt erforderlich ist.

Da das AP2gamma-Gen bei Primaten besonders stark in den Vorläuferzellen für die entwicklungsgeschichtlich jungen oberen Schichten der Hirnrinde aktiv ist, könnten diese Ergebnisse auch neues Licht auf die Evolution des menschlichen Gehirns werfen.

Eine auffällige Eigenschaft der Großhirnrinde - der gefalteten äußeren Schicht des Gehirns mit den sprichwörtlichen "grauen Zellen" - ist ihre Unterteilung in verschiedene Bereiche und Schichten. Dabei unterscheiden sich die Hirnregionen in der Zusammensetzung der Zelllagen aus Neuronen und anderen Zellen. "Diese Differenzierung zu verstehen, ist auch deshalb interessant, weil die Unterschiede auf zellulärer Ebene mit den verschiedenen Leistungen und Aufgaben der einzelnen Kortexregionen gekoppelt sind", sagt Prof. Dr. Magdalena Götz vom Institut für Stammzellforschung am Helmholtz Zentrum München. Die 6-schichtige Großhirnrinde trat in der Evolution erst bei den Säugetieren auf. Und die sind zu viel komplexerem Verhalten fähig als beispielsweise Reptilien oder Fische.

Ein wichtiger Schritt gelang nun Wissenschaftlern der Institute für Stammzellforschung und für Experimentelle Genetik des Helmholtz Zentrums München. In ihrer gerade in der renommierten Fachzeitschrift Nature Neuroscience veröffentlichten Studie berichten Luisa Pinto, Magdalena Götz und ihre Kollegen, dass Unterschiede zwischen den Kortexregionen dadurch beeinflusst wird, wann und wo sich Vorläuferzellen zu reifen Nervenzellen weiterentwickeln. Das entscheidende Steuer-Molekül war dabei der Transkriptionsfaktor AP2gamma: ein Protein, das an der Regulation der Gen-Aktivität in den Zellen beteiligt ist. "Diese Arbeiten konnten AP2gamma erstmals als molekularen Faktor identifizieren, der für die Vermehrung bestimmter Nervenzellen während der Evolution des Vorderhirns wichtig zu sein scheint", betont Götz.

Zunächst stellten die Forscher fest, dass AP2gamma im Mäuse-Embryo ausschließlich in der Großhirnrinde vorhanden ist, also mit ungewöhnlicher Spezifität. Dann untersuchten sie Mäuse, denen das AP2gamma-Gen selektiv in der Großhirnrinde fehlt. Bei diesen Tieren gab es weniger Nervenzellen in den oberen Schichten der Hirnrinde des Hinterhauptlappens - das ist die Region, in der das Sehzentrum sitzt. Erwachsene Mäusen ohne AP2gamma hatten tatsächlich Probleme mit der Sehfähigkeit: Das räumliche Auflösungsvermögen des Sehzentrums war stark verringert und auch die Fähigkeit der Mäuse zu beidäugigem Sehen gestört.

Die Ursache dafür fanden das Forscherteam um Götz auf mikroskopischer Ebene: Zwar ist die Zellteilung nicht verringert, wenn AP2gamma fehlt. Aber offenbar wird die Reifung der Vorläuferzellen verhindert: Bei AP2gamma-knockout-Mäusen behalten sie teilweise die Eigenschaften früher Vorläuferzellen bei und sterben deswegen früher ab. Infolgedessen wachsen weniger fertige Nervenzellen heran.

Besonders bemerkenswert ist an diesen Studienergebnissen, dass der Ausfall der Nervenzell-Entwicklung bei den AP2gamma-knockout-Mäusen auf den visuellen Kortex beschränkt ist. Gerade höher entwickelte Säugetiere haben besonders viel der Neurone, die durch AP2gamma reguliert werden.

Weitere Informationen

Originalveröffentlichung:
L. Pinto, D. Drechsel, M.-T. Schmid, J. Ninkovic, M. Irmler, M.S. Brill, L. Restani, L. Gianfranceschi, C. Cerri, S.N. Weber, V. Tarabykin, F. Guillemot, J. Beckers, N. Zecevic, C. Dehay, M. Caleo, H. Schorle and M. Götz (2009). AP2gamma regulates basal progenitor fate in a region- and layer-specific manner in the developing cortex. Nature Neuroscience 12, 1229-1237.
Aricle highlight:
Waclaw, RR and K. Campbell (2009) Regional control of cortical lamination. Nature Neuroscience 12, 1211-1212.
Das Helmholtz Zentrum München ist das deutsche Forschungszentrum für Gesundheit und Umwelt. Als führendes Zentrum mit der Ausrichtung auf Environmental Health erforscht es chronische und komplexe Krankheiten, die aus dem Zusammenwirken von Umweltfaktoren und individueller genetischer Disposition entstehen. Das Helmholtz Zentrum München beschäftigt rund 1680 Mitarbeiterinnen und Mitarbeiter. Der Hauptsitz des Zentrums liegt in Neuherberg im Norden Münchens auf einem 50 Hektar großen Forschungscampus. Das Helmholtz Zentrum München gehört der größten deutschen Wissenschaftsorganisation, der Helmholtz-Gemeinschaft an, in der sich 16 naturwissenschaftlich-technische und medizinisch-biologische Forschungszentren mit insgesamt 26500 Beschäftigten

zusammengeschlossen haben.

Das Institut für Stammzellforschung untersucht die Hauptelemente der Regulation des Zellschicksals und der Zellvermehrung in unterschiedlichen Organsystemen.
Die Wissenschaftler erforschen Stammzellen unterschiedlicher Organe, etwa des Nervensystems oder des Hämatopoese-Systems, um die molekularen und zellulären Mechanismen aufzuklären, die für das gemeinsame Hauptmerkmal aller Stammzellen verantwortlich sind. Ein weiterer Schwerpunkt ist die Regulation der Entstehung spezifischen Zelltypen aus Stammzellen in Hinblick auf einen rekonstitutierenden therapeutischen Ansatz.

Ansprechpartner für Medienvertreter

Sven Winkler, Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Ingolstädter Landstraße 1,85764 Neuherberg

Tel.: 089-3187-3946, Fax 089-3187-3324, E-Mail: presse@helmholtz-muenchen.de

Michael van den Heuvel | idw
Weitere Informationen:
http://www.helmholtz-muenchen.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Von Hefe für Demenzerkrankungen lernen
22.02.2018 | Heinrich-Heine-Universität Düsseldorf

nachricht Rettender Ritter in goldener Rüstung
22.02.2018 | Exzellenzcluster Entzündungsforschung

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: Innovation im Leichtbaubereich: Belastbares Sandwich aus Aramid und Carbon

Die Entwicklung von Leichtbaustrukturen ist eines der zentralen Zukunftsthemen unserer Gesellschaft. Besonders in der Luftfahrtindustrie und in anderen Transportbereichen sind Leichtbaustrukturen gefragt. Sie ermöglichen Energieeinsparungen und reduzieren den Ressourcenverbrauch bei Treibstoffen und Material. Zum Einsatz kommen dabei Verbundmaterialien in der so genannten Sandwich-Bauweise. Diese bestehen aus zwei dünnen, steifen und hochfesten Deckschichten mit einer dazwischen liegenden dicken, vergleichsweise leichten und weichen Mittelschicht, dem Sandwich-Kern.

Aramidpapier ist ein etabliertes Material für solche Sandwichkerne. Sein mechanisches Strukturversagen ist jedoch noch unzureichend erforscht: Bislang fehlten...

Im Focus: Die Brücke, die sich dehnen kann

Brücken verformen sich, daher baut man normalerweise Dehnfugen ein. An der TU Wien wurde eine Technik entwickelt, die ohne Fugen auskommt und dadurch viel Geld und Aufwand spart.

Wer im Auto mit flottem Tempo über eine Brücke fährt, spürt es sofort: Meist rumpelt man am Anfang und am Ende der Brücke über eine Dehnfuge, die dort...

Im Focus: Eine Frage der Dynamik

Die meisten Ionenkanäle lassen nur eine ganz bestimmte Sorte von Ionen passieren, zum Beispiel Natrium- oder Kaliumionen. Daneben gibt es jedoch eine Reihe von Kanälen, die für beide Ionensorten durchlässig sind. Wie den Eiweißmolekülen das gelingt, hat jetzt ein Team um die Wissenschaftlerin Han Sun (FMP) und die Arbeitsgruppe von Adam Lange (FMP) herausgefunden. Solche nicht-selektiven Kanäle besäßen anders als die selektiven eine dynamische Struktur ihres Selektivitätsfilters, berichten die FMP-Forscher im Fachblatt Nature Communications. Dieser Filter könne zwei unterschiedliche Formen ausbilden, die jeweils nur eine der beiden Ionensorten passieren lassen.

Ionenkanäle sind für den Organismus von herausragender Bedeutung. Wenn zum Beispiel Sinnesreize wahrgenommen, ans Gehirn weitergeleitet und dort verarbeitet...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

Tag der Seltenen Erkrankungen – Deutsche Leberstiftung informiert über seltene Lebererkrankungen

21.02.2018 | Veranstaltungen

Digitalisierung auf dem Prüfstand: Hochkarätige Konferenz zu Empowerment in der agilen Arbeitswelt

20.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Von Hefe für Demenzerkrankungen lernen

22.02.2018 | Biowissenschaften Chemie

Sektorenkopplung: Die Energiesysteme wachsen zusammen

22.02.2018 | Seminare Workshops

Die Entschlüsselung der Struktur des Huntingtin Proteins

22.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics