Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ein Schloss, viele Schlüssel

05.10.2010
Max-Planck-Forscher entdecken, wie die B-Zellen des Immunsystems auf unterschiedlichste Stoffe reagieren können

Damit das Immunsystem Krankheitserreger aufspüren und unschädlich machen kann, muss es unzählige verschiedene körperfremde Stoffe erkennen und darauf reagieren können.


Auf ruhenden B-Zellen bildet der B-Zell-Rezeptor Oligomere aus mehreren Untereinheiten. In dieser Form sind die Rezeptoren inaktiv. Die Bindung des Rezeptors an einen passenden Bindungspartner (Antigen) führt zur Auflösung dieser oligomeren Struktur und aktiviert die Signalketten im Zellinneren (Blitze). Michael Reth; Max-Planck-Institut für Immunbiologie, Freiburg

Wissenschaftlern des Max-Planck-Instituts für Immunbiologie und des Centre for Biological Signalling Studies BIOSS der Universität Freiburg haben nun herausgefunden, wie die B-Zellen des Immunsystems von den zahllosen Stoffen unserer Umwelt aktiviert werden können.

Demnach werden die Rezeptormoleküle auf der Oberfläche der B-Zellen erst dann aktiviert, wenn sich die Untereinheiten der Rezeptoren nach der Bindung von Fremdstoffen voneinander trennen. Die Ergebnisse stellen die bisherige Vorstellung von der Aktivierung der B-Zell-Rezeptoren auf den Kopf. Sie könnten möglicherweise dazu beitragen, neue Impfstrategien oder Behandlungsmethoden gegen B-Zell-Tumore zu entwickeln. (Nature, 23. September 2010)

Viele menschliche Erkrankungen wie die steigende Zahl an Autoimmunerkrankungen oder B-Zell-Tumore wie Leukämie oder Lymphdrüsenkrebs werden durch überaktive Rezeptoren auf der Oberfläche von weißen Blutkörperchen hervorgerufen – den so genannten B-Lymphozyten, kurz B-Zellen. Jede B-Zelle trägt bis zu 120.000 B-Zell-Rezeptoren auf ihrer Oberfläche und die Aktivierung dieser Rezeptoren regt die Zelle zur Bildung von Antikörpern an.

Die Rezeptoren funktionieren dabei nach dem Schlüssel-Schloss-Prinzip, bei dem nur ein passender Stoff (Schlüssel) den Rezeptor (Schloss) aktivieren und eine Immunantwort auslösen kann. Wenn Millionen von Schlüsseln ein Schloss aufschließen können, stellt sich die Frage, wie dieses Schloss funktioniert und wie wir vor einer anhaltenden Überaktivität unserer Immunabwehr geschützt werden.

Jianying Yang und Michael Reth haben jetzt eine Antwort gefunden, die das Problem der Aktivierung des Immunsystems erklärt. Mit Hilfe von Methoden der Synthetischen Biologie bauten sie den B-Zell-Rezeptor von Mäusen in einer Fruchtfliegenzelle nach. Anders als die bisherige Forschung interessierte sie der Rezeptor auf ruhenden B-Zellen, also den noch nicht aktivierten Zellen. Das überraschende Ergebnis: Der Rezeptor auf ruhenden B-Zellen besteht aus mehreren verschiedenen Untereinheiten und bildet so genannte Oligomere.

In dieser Form sind für die Signalweiterleitung wichtige Abschnitte der Rezeptoren verdeckt. Bindet ein passender Bindungspartner an den Rezeptor, zerfallen die Oligomere, und die einzelnen Untereinheiten können aktiv werden. „Der Trennungsprozess ist weitgehend unabhängig von der Struktur des Bindungspartners. So lässt sich erklären, warum der B-Zell-Rezeptor von tausenden unterschiedlichen Stoffen aktiviert werden kann“, erklärt Michael Reth vom Max-Planck-Institut für Immunbiologie. Die Entdeckung, dass die Untereinheiten der B-Zell-Rezeptoren geordnete Oligomer-Komplexe bilden, lässt zudem darauf schließen, dass die Rezeptoren auf ruhenden B-Zellen nur unter genau definierten Bedingungen aktiviert werden.

Lehrmeinung widerlegt
Das neue Modell der Aktivierung des Rezeptors widerspricht der bislang anerkannten Lehrmeinung. Bislang war man der Ansicht, dass die Rezeptoren ungeordnet in der Zellmembran vorliegen und sich erst nach Kontakt mit einem Bindungspartner zusammenlagern. „Unser neues Modell beruht dagegen auf der Auflösung und nicht auf der Bildung einer bestimmten Rezeptorstruktur. Dies ist eine Wende in der immunologischen Forschung und möglicherweise in der gesamten Zellbiologie“, betont Michael Reth. Denn auch andere Rezeptormoleküle bilden offenbar im Ruhezustand Oligomere, die erst aktiv werden, wenn sie in ihre Untereinheiten zerfallen oder ihre Konformation ändern.
Veröffentlichung
Jianying Yang and Michael Reth
Oligomeric organization of the B cell antigen receptor on resting cells
Nature, 467:465-469: 23. September 2010 (doi: 10.1038/nature09357)
Kontakt
Prof. Dr. Michael Reth
Max-Planck-Institut für Immunbiologie Freiburg
Tel.: 0761/ 5108 420
Fax: 0761/ 5108 423
E-Mail: michael.reth@bioss.uni-freiburg.de

Dr Harald Rösch | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.bioss.uni-freiburg.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wie Reize auf dem Weg ins Bewusstsein versickern
22.09.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Lebendiges Gewebe aus dem Drucker
22.09.2017 | Universitätsklinikum Freiburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie