Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ein Schloss, viele Schlüssel

05.10.2010
Max-Planck-Forscher entdecken, wie die B-Zellen des Immunsystems auf unterschiedlichste Stoffe reagieren können

Damit das Immunsystem Krankheitserreger aufspüren und unschädlich machen kann, muss es unzählige verschiedene körperfremde Stoffe erkennen und darauf reagieren können.


Auf ruhenden B-Zellen bildet der B-Zell-Rezeptor Oligomere aus mehreren Untereinheiten. In dieser Form sind die Rezeptoren inaktiv. Die Bindung des Rezeptors an einen passenden Bindungspartner (Antigen) führt zur Auflösung dieser oligomeren Struktur und aktiviert die Signalketten im Zellinneren (Blitze). Michael Reth; Max-Planck-Institut für Immunbiologie, Freiburg

Wissenschaftlern des Max-Planck-Instituts für Immunbiologie und des Centre for Biological Signalling Studies BIOSS der Universität Freiburg haben nun herausgefunden, wie die B-Zellen des Immunsystems von den zahllosen Stoffen unserer Umwelt aktiviert werden können.

Demnach werden die Rezeptormoleküle auf der Oberfläche der B-Zellen erst dann aktiviert, wenn sich die Untereinheiten der Rezeptoren nach der Bindung von Fremdstoffen voneinander trennen. Die Ergebnisse stellen die bisherige Vorstellung von der Aktivierung der B-Zell-Rezeptoren auf den Kopf. Sie könnten möglicherweise dazu beitragen, neue Impfstrategien oder Behandlungsmethoden gegen B-Zell-Tumore zu entwickeln. (Nature, 23. September 2010)

Viele menschliche Erkrankungen wie die steigende Zahl an Autoimmunerkrankungen oder B-Zell-Tumore wie Leukämie oder Lymphdrüsenkrebs werden durch überaktive Rezeptoren auf der Oberfläche von weißen Blutkörperchen hervorgerufen – den so genannten B-Lymphozyten, kurz B-Zellen. Jede B-Zelle trägt bis zu 120.000 B-Zell-Rezeptoren auf ihrer Oberfläche und die Aktivierung dieser Rezeptoren regt die Zelle zur Bildung von Antikörpern an.

Die Rezeptoren funktionieren dabei nach dem Schlüssel-Schloss-Prinzip, bei dem nur ein passender Stoff (Schlüssel) den Rezeptor (Schloss) aktivieren und eine Immunantwort auslösen kann. Wenn Millionen von Schlüsseln ein Schloss aufschließen können, stellt sich die Frage, wie dieses Schloss funktioniert und wie wir vor einer anhaltenden Überaktivität unserer Immunabwehr geschützt werden.

Jianying Yang und Michael Reth haben jetzt eine Antwort gefunden, die das Problem der Aktivierung des Immunsystems erklärt. Mit Hilfe von Methoden der Synthetischen Biologie bauten sie den B-Zell-Rezeptor von Mäusen in einer Fruchtfliegenzelle nach. Anders als die bisherige Forschung interessierte sie der Rezeptor auf ruhenden B-Zellen, also den noch nicht aktivierten Zellen. Das überraschende Ergebnis: Der Rezeptor auf ruhenden B-Zellen besteht aus mehreren verschiedenen Untereinheiten und bildet so genannte Oligomere.

In dieser Form sind für die Signalweiterleitung wichtige Abschnitte der Rezeptoren verdeckt. Bindet ein passender Bindungspartner an den Rezeptor, zerfallen die Oligomere, und die einzelnen Untereinheiten können aktiv werden. „Der Trennungsprozess ist weitgehend unabhängig von der Struktur des Bindungspartners. So lässt sich erklären, warum der B-Zell-Rezeptor von tausenden unterschiedlichen Stoffen aktiviert werden kann“, erklärt Michael Reth vom Max-Planck-Institut für Immunbiologie. Die Entdeckung, dass die Untereinheiten der B-Zell-Rezeptoren geordnete Oligomer-Komplexe bilden, lässt zudem darauf schließen, dass die Rezeptoren auf ruhenden B-Zellen nur unter genau definierten Bedingungen aktiviert werden.

Lehrmeinung widerlegt
Das neue Modell der Aktivierung des Rezeptors widerspricht der bislang anerkannten Lehrmeinung. Bislang war man der Ansicht, dass die Rezeptoren ungeordnet in der Zellmembran vorliegen und sich erst nach Kontakt mit einem Bindungspartner zusammenlagern. „Unser neues Modell beruht dagegen auf der Auflösung und nicht auf der Bildung einer bestimmten Rezeptorstruktur. Dies ist eine Wende in der immunologischen Forschung und möglicherweise in der gesamten Zellbiologie“, betont Michael Reth. Denn auch andere Rezeptormoleküle bilden offenbar im Ruhezustand Oligomere, die erst aktiv werden, wenn sie in ihre Untereinheiten zerfallen oder ihre Konformation ändern.
Veröffentlichung
Jianying Yang and Michael Reth
Oligomeric organization of the B cell antigen receptor on resting cells
Nature, 467:465-469: 23. September 2010 (doi: 10.1038/nature09357)
Kontakt
Prof. Dr. Michael Reth
Max-Planck-Institut für Immunbiologie Freiburg
Tel.: 0761/ 5108 420
Fax: 0761/ 5108 423
E-Mail: michael.reth@bioss.uni-freiburg.de

Dr Harald Rösch | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.bioss.uni-freiburg.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Forscher entschlüsseln zentrales Reaktionsprinzip von Metalloenzymen
15.01.2018 | Rheinisch-Westfälische Technische Hochschule Aachen

nachricht Leuchtende Echsen - Knochenbasierte Fluoreszenz bei Chamäleons
15.01.2018 | Staatliche Naturwissenschaftliche Sammlungen Bayerns

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Erstmalige präzise Messung der effektiven Ladung eines einzelnen Moleküls

Zum ersten Mal ist es Forschenden gelungen, die effektive elektrische Ladung eines einzelnen Moleküls in Lösung präzise zu messen. Dieser fundamentale Fortschritt einer vom SNF unterstützten Professorin könnte den Weg für die Entwicklung neuartiger medizinischer Diagnosegeräte ebnen.

Die elektrische Ladung ist eine der Kerneigenschaften, mit denen Moleküle miteinander in Wechselwirkung treten. Das Leben selber wäre ohne diese Eigenschaft...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Wie Metallstrukturen effektiv helfen, Knochen zu heilen

Forscher schaffen neue Generation von Knochenimplantaten

Wissenschaftler am Julius Wolff Institut, dem Berlin-Brandenburger Centrum für Regenerative Therapien und dem Centrum für Muskuloskeletale Chirurgie der...

Im Focus: Extrem helle und schnelle Lichtemission

Eine in den vergangenen Jahren intensiv untersuchte Art von Quantenpunkten kann Licht in allen Farben wiedergeben und ist sehr hell. Ein internationales Forscherteam mit Beteiligung von Wissenschaftlern der ETH Zürich hat nun herausgefunden, warum dem so ist. Die Quantenpunkte könnten dereinst in Leuchtdioden zum Einsatz kommen.

Ein internationales Team von Wissenschaftlern der ETH Zürich, von IBM Research Zurich, der Empa und von vier amerikanischen Forschungseinrichtungen hat die...

Im Focus: Paradigmenwechsel in Paris: Den Blick für den gesamten Laserprozess öffnen

Die neusten Trends und Innovationen bei der Laserbearbeitung von Composites hat das Fraunhofer-Institut für Lasertechnik ILT im März 2018 auf der JEC World Composite Show im Fokus: In Paris demonstrieren die Forscher auf dem Gemeinschaftsstand des Aachener Zentrums für integrativen Leichtbau AZL unter anderem, wie sich Verbundwerkstoffe mit dem Laser fügen, strukturieren, schneiden und bohren lassen.

Keine andere Branche hat in der Öffentlichkeit für so viel Aufmerksamkeit für Verbundwerkstoffe gesorgt wie die Automobilindustrie, die neben der Luft- und...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Tagung „Elektronikkühlung - Wärmemanagement“ vom 06. - 07.03.2018 in Essen

11.01.2018 | Veranstaltungen

Registrierung offen für Open Science Conference 2018 in Berlin

11.01.2018 | Veranstaltungen

Wie sieht die Bioökonomie der Zukunft aus?

10.01.2018 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Mit mikroskopischen Luftblasen dämmen

15.01.2018 | Architektur Bauwesen

Feldarbeiten der größten Bodeninventur Deutschlands sind abgeschlossen

15.01.2018 | Agrar- Forstwissenschaften

Perowskit-Solarzellen: Es muss gar nicht perfekt sein

15.01.2018 | Materialwissenschaften