Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Schleimfressern im Darm auf der Spur

05.03.2013
Einem Team um die Mikrobiologen David Berry, Alexander Loy und Michael Wagner von der Fakultät für Lebenswissenschaften der Universität Wien ist es in Zusammenarbeit mit ForscherInnen der Max F. Perutz Laboratories (Universität Wien und Medizinische Universität Wien) mit Hilfe der NanoSIMS-Technologie erstmals gelungen, in den Darm hineinzuschauen und Mikroorganismen beim Fressen der Darmschleimhaut zu beobachten. Die Ergebnisse dieses Forschungsprojektes erscheinen aktuell in der renommierten Zeitschrift "Proceedings of the National Academy of Sciences" (PNAS).

Wer das Forschungsprojekt von Michael Wagner und seinem Team verstehen will, muss bereit sein, dem Wissenschafter in die Untiefen des Mäusedarms zu folgen. Michael Wagner, Professor für Mikrobielle Ökologie der Universität Wien, erklärt das vereinfacht so: "Wie die Kuh auf der Wiese weidet, so weiden dort die Bakterien auf dem durch die Darmschleimhaut ausgeschiedenen Schleim.


Korrespondierende FISH- (links) und NanoSIMS- (rechts) Analysen von Darmmikroorganismen. Bacteroides bzw. Akkermansia-Zellen wurden mit Hilfe von Gensonden und FISH spezifisch angefärbt. Der Gehalt derselben Zellen am stabilen Isotop 15N wurde mittels NanoSIMS analysiert. Je höher der 15N-Gehalt einer Zelle, desto mehr Darmschleim wurde von ihr aufgenommen. Weiße Pfeile zeigen auf Zellen, die Schleim aufgenommen haben. Die mit einem grünen Pfeil markierte Bacteroides-Zelle hat sich nicht von Schleim ernährt.

(Copyright: Mikrobielle Ökologie, Universität Wien)

Sie ernähren sich also nicht vom Futter der Mäuse. Es gibt eine Gruppe von Mikroorganismen, die darauf spezialisiert ist, Ausscheidungsprodukte ihres Wirts zu fressen." Die Schleimschicht im Darm ist eine wesentliche Barriere für das Eindringen krankheitserregender Mikroorganismen in den Körper und spielt auch bei entzündlichen Darmerkrankungen eine große Rolle. Darum interessiert sich die Wissenschaft dafür, welche Bakterien im gesunden Organismus diese Schleimschicht bewohnen und somit möglicherweise die Besiedelung und den Abbau dieser Barriere durch Krankheitserreger unterdrücken.

Kooperation: Department für Mikrobielle Ökologie und Max F. Perutz Laboratories

Das Team um Michael Wagner und Alexander Loy wollte im Rahmen ihres durch das österreichische Genomforschungsprogramms GEN-AU unterstützten Projektes wissen: Für welche Organismen in gesunden Mäusen ist die Mucosa, die Darmschleimschicht, eine Delikatesse? "Wir haben uns einen Versuchsaufbau ausgedacht, mit dessen Hilfe es uns weltweit zum ersten Mal gelungen ist, in den Darm hineinzuschauen und die Organismen beim Abweiden des Schleims direkt zu beobachten und zu messen, wie viel Schleim von ihnen aufgenommen wurde", erklärt Gruppenleiter Alexander Loy vom Department für Mikrobielle Ökologie der Universität Wien.
Dazu haben MikrobiologInnen mit Unterstützung der Teams um Thomas Decker vom Department für Mikrobiologie, Immunbiologie und Genetik der Max F. Perutz Laboratories und Bärbel Stecher von der LMU München eine Aminosäure mit stabilen Isotopen markiert, von der man weiß, dass ein Gutteil nach der Aufnahme in die Blutbahn im Schleim landet. Wagner sagt: "Nach wenigen Stunden konnten unsere Kooperationspartner Andreas Richter und Wolfram Wanek vom Department für Terrestrische Ökosystemforschung der Universität Wien mit Hilfe der Isotopenverhältnis-Massenspektrometrie tatsächlich feststellen, dass die Isotopen im Darmschleim angekommen sind und dort von Bakterien abgebaut wurden." Damit waren die Voraussetzungen geschaffen, um jene Bakterien identifizieren zu können, die sich von der Schleimschicht ernähren.

Forschungserfolg durch NanoSIMS-Facility der Universität Wien

Schlüsseltool bei den Untersuchungen war die hochauflösende Sekundärionen-Massenspektrometrie, kurz NanoSIMS genannt. Dabei handelt es sich um ein mehr als zwei Millionen Euro teures Gerät, das seit Februar 2010 an der Fakultät für Lebenswissenschaften der Universität Wien im Einsatz ist und seitdem vom Team um Michael Wagner für Anwendungen in der Mikrobiologie und Ökologie weiterentwickelt wird. "Mit Hilfe dieser Technik können wir für jede Mikrobenzelle in einer Darmprobe die Menge an aufgenommenen stabilen Isotopen genau quantifizieren", erläutert Arno Schintlmeister, der das Gerät an der Fakultät als Operator betreibt.

"Die Invesititonskosten für das NanoSIMS-Gerät waren sehr hoch, und es hat eine Weile gedauert, bis wir dieses hochkomplexe Gerät in unsere Forschung vollständig integrieren konnten. Jetzt werden wir allerdings belohnt: Die Universität Wien hat damit weltweit die erste Studie, bei der man die Funktion einzelner Darmbakterienzellen nicht nur indirekt abzuleiten versucht, sondern wirklich direkt misst", so Mikrobiologe Michael Wagner. Dieser Forschungsansatz hat großes Potenzial und ist ein Thema, das am Department für mikrobielle Ökologie in den von David Berry und Alexander Loy geleiteten Arbeitsgruppen einen Schwerpunkt in den nächsten Jahren darstellen wird.

Darm-Mikrobiota ist heißes Forschungsthema

Die durch die NanoSIMS-Facility vermessenen Bakterienzellen wurden anschließend mit Hilfe der Fluoreszenz-in-situ-Hybridisierung – kurz FISH genannt – im konfokalen Laser Scanning Mikroskop identifiziert. "Wir konnten eine Reihe von schleimfressenden Mikroorganismen eindeutig identifizieren. Die wichtigsten Player sind Akkermansia muciniphilia und Bacteroides acidifaciens“. erläutert Wagner und weiter: "Die Darm-Mikrobiota ist weltweit ein ganz heißes Forschungsthema, da viele Krankheiten mit der Zusammensetzung unserer Darm-Mikroorganismengemeinschaften zu korrelieren scheinen – von Fettleibigkeit über Autismus bis zu entzündlichen Darmerkrankungen."

Publikation in PNAS
Host-compound foraging intestinal microbiota revealed by single-cell stable isotope probing. Von: David Berry, Bärbel Stecher, Arno Schintlmeister, Jochen Reichert, Sandrine Brugiroux, Birgit Wild, Wolfgang Wanek, Andreas Richter, Isabella Rauch, Thomas Decker, Alexander Loy und Michael Wagner. In: "Proceedings of the National Academy of Sciences" (PNAS), März 2013.

Beteiligte Institutionen
Fakultät für Lebenswissenschaften der Universität Wien, Max-von-Pettenkofer Institute of Hygiene and Medical Microbiology, Ludwig-Maximilians-Universität München, Department für Mikrobiologie, Immunbiologie und Genetik an den Max F. Perutz Laboratories der Universität Wien und der Medizinischen Universität Wien.
Die Studie wurde durchgeführt im Rahmen des GEN-AU Verbundprojektes Inflammobiota.

Wissenschaftlicher Kontakt
Univ.-Prof. Mag. Dr. Michael Wagner
Department für Mikrobielle Ökologie
Universität Wien
1090 Wien, Althanstrasse 14
T +43-1-4277-54 390
M +43-664-602 77-543 90
wagner@microbial-ecology.net

Rückfragehinweis
Mag. Veronika Schallhart
Pressebüro der Universität Wien
Forschung und Lehre
1010 Wien, Universitätsring 1
T +43-1-4277-175 30
M +43-664-602 77-175 30
veronika.schallhart@univie.ac.at
Weitere Informationen:

http://www.pnas.org/cgi/doi/10.1073/pnas.1219247110
- DOI der Publikation in PNAS

http://gutmicrobiota.univie.ac.at/inflammobiota/
- GEN-AU Verbundprojektes Inflammobiota

Veronika Schallhart | Universität Wien
Weitere Informationen:
http://www.univie.ac.at

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Aufschlussreiche Partikeltrennungen
20.07.2017 | Gesellschaft Deutscher Chemiker e.V.

nachricht Bildgebung von entstehendem Narbengewebe
20.07.2017 | Gesellschaft Deutscher Chemiker e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molekulares Lego

Sie können ihre Farbe wechseln, ihren Spin verändern oder von fest zu flüssig wechseln: Eine bestimmte Klasse von Polymeren besitzt faszinierende Eigenschaften. Wie sie das schaffen, haben Forscher der Uni Würzburg untersucht.

Bei dieser Arbeit handele es sich um ein „Hot Paper“, das interessante und wichtige Aspekte einer neuen Polymerklasse behandelt, die aufgrund ihrer Vielfalt an...

Im Focus: Das Universum in einem Kristall

Dresdener Forscher haben in Zusammenarbeit mit einem internationalen Forscherteam einen unerwarteten experimentellen Zugang zu einem Problem der Allgemeinen Realitätstheorie gefunden. Im Fachmagazin Nature berichten sie, dass es ihnen in neuartigen Materialien und mit Hilfe von thermoelektrischen Messungen gelungen ist, die Schwerkraft-Quantenanomalie nachzuweisen. Erstmals konnten so Quantenanomalien in simulierten Schwerfeldern an einem realen Kristall untersucht werden.

In der Physik spielen Messgrößen wie Energie, Impuls oder elektrische Ladung, welche ihre Erscheinungsform zwar ändern können, aber niemals verloren gehen oder...

Im Focus: Manipulation des Elektronenspins ohne Informationsverlust

Physiker haben eine neue Technik entwickelt, um auf einem Chip den Elektronenspin mit elektrischen Spannungen zu steuern. Mit der neu entwickelten Methode kann der Zerfall des Spins unterdrückt, die enthaltene Information erhalten und über vergleichsweise grosse Distanzen übermittelt werden. Das zeigt ein Team des Departement Physik der Universität Basel und des Swiss Nanoscience Instituts in einer Veröffentlichung in Physical Review X.

Seit einigen Jahren wird weltweit untersucht, wie sich der Spin des Elektrons zur Speicherung und Übertragung von Information nutzen lässt. Der Spin jedes...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: Das Proton präzise gewogen

Wie schwer ist ein Proton? Auf dem Weg zur möglichst exakten Kenntnis dieser fundamentalen Konstanten ist jetzt Wissenschaftlern aus Deutschland und Japan ein wichtiger Schritt gelungen. Mit Präzisionsmessungen an einem einzelnen Proton konnten sie nicht nur die Genauigkeit um einen Faktor drei verbessern, sondern auch den bisherigen Wert korrigieren.

Die Masse eines einzelnen Protons noch genauer zu bestimmen – das machen die Physiker um Klaus Blaum und Sven Sturm vom Max-Planck-Institut für Kernphysik in...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Operatortheorie im Fokus

20.07.2017 | Veranstaltungen

Technologietag der Fraunhofer-Allianz Big Data: Know-how für die Industrie 4.0

18.07.2017 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - September 2017

17.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

1,4 Millionen Euro für Forschungsprojekte im Industrie 4.0-Kontext

20.07.2017 | Förderungen Preise

Von photonischen Nanoantennen zu besseren Spielekonsolen

20.07.2017 | Physik Astronomie

Bildgebung von entstehendem Narbengewebe

20.07.2017 | Biowissenschaften Chemie