Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie „schlau“ sich Pflanzen vermehren

15.05.2013
Bremer Biologieprofessorin Rita Groß-Hardt veröffentlicht mit ihrer Arbeitsgruppe neue Erkenntnisse in international renommierter Fachzeitschrift „Developmental Cell“

Dass Blumen und andere Pflanzen sich durch die Übertragung von Pollen fortpflanzen weiß man. Doch wie funktioniert das genau? Welche Prozesse und Faktoren spielen eine entscheidende Rolle? Das sind bisher unbeantwortete Fragen, mit denen sich Biologen in ihrer Grundlagenforschung beschäftigen.

Wissenschaftler der Universität Bremen haben jetzt herausgefunden, dass bei der Befruchtung von Blütenpflanzen das Gas Ethylen eine wichtige Rolle spielt. Ihre neuen Erkenntnisse sind ein wichtiger Schritt zum besseren Verständnis der pflanzlichen Reproduktion und könnten langfristig einen Beitrag zur Ertragssteigerung von Nutzpflanzen leisten. Ihre Ergebnisse haben die Professorin Rita Groß-Hardt und ihre Arbeitsgruppe vom Fachbereich Biologie/Chemie jetzt in der aktuellen Ausgabe der international renommierten Fachzeitschrift „Developmental Cell“ veröffentlicht.

Ethylen beschleunigt Alterungsprozesse bei Pflanzen

Das von Pflanzen gebildete Gas Ethylen beschleunigt Alterungsprozesse bei Pflanzen – etwa, wenn Blütenblätter anfangen zu welken. Industriell nutzt man es, um unreif geerntete Früchte wie Bananen kontrolliert reifen zu lassen, damit sie gelb in die Supermarktregale gelangen. Um die neuen Erkenntnisse der Biologen zu verstehen, muss man den Reproduktionsprozess unter dem Mikroskop im Detail betrachten: In Pflanzen werden die Spermazellen in Pollen transportiert. Im Laufe des Reproduktionsprozesses wachsen sie zu langen so genannten Pollenschläuchen aus. Hunderte von ihnen machen sich auf den Weg zu den Samenanlagen der Pflanze, in denen sich je eine reife Eizelle befindet.

Die Pollenschläuche werden dabei von Botenstoffen angelockt, die von so genannten Synergiden (Eizellnachbarzellen) gebildet werden. Der erste Pollenschlauch, der sein Ziel erreicht, platzt auf und entlässt die für die Befruchtung nötigen Spermazellen. Danach sterben die Synergiden ab, so dass keine weiteren Pollenschläuche angelockt werden können. Auf diese Weise wird sichergestellt, dass der sich nun entwickelnde Same nur von einem „Vater“ abstammt.

„Bislang war unklar, wie es von der erfolgreichen Befruchtung zum Absterben der Synergiden kommt“, sagt Professorin Rita Groß-Hardt. „Meine Mitarbeiter, allen voran Dr. Ronny Völz, haben verschiedene Experimente durchgeführt, die zeigen, dass die Befruchtung in den Samenanlagen zur Bildung von Ethylen führt. Interessanterweise löst das Gas ein gezieltes Absterben der Synergiden aus, während andere Zellen der Samenanlage keinen Schaden nehmen“, so die Biologin.

Rita Groß-Hardt ist seit Anfang April 2013 am Fachbereich Biologie/Chemie der Universität Bremen als Professorin tätig. Dort leitet sie die Abteilung für Molekulare Genetik der Pflanzen.

Achtung Redaktionen: In der Pressestelle erhalten Sie ein PDF des gesamten Artikels und ein Foto von Professorin Rita Groß-Hardt mit ihren Mitarbeitern bei der Laborarbeit. Kontakt unter Telefon: 0421 218-60150, E-Mail: presse@uni-bremen.de .

Weitere Informationen:

Universität Bremen
Fachbereich Biologie/Chemie
Prof. Dr. Rita Groß-Hardt
E-Mail: gross.hardt@uni-bremen.de

Meike Mossig | idw
Weitere Informationen:
http://www.uni-bremen.de
http://www.sciencedirect.com/science/article/pii/S1534580713001925

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress
23.02.2018 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

nachricht Wie Zellen unterschiedlich auf Stress reagieren
23.02.2018 | Max-Planck-Institut für molekulare Genetik

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics