Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Schlaganfall: Hirnzellen verstärken schädliche Entladungen

20.12.2016

Bei einem Schlaganfall kann der geschädigte Hirnbereich infolge elektrischer Entladungen immer weiter anwachsen. Bonner Forscher des DZNE haben die Mechanismen solcher „Depolarisationswellen“ an Mäusen untersucht und herausgefunden, dass bestimmte Hirnzellen – sogenannte Astrozyten – die fatalen Entladungen potenzieren. Die Studienergebnisse deuten zugleich auf etwaige Gegenmaßnahmen hin: Mögliche Ansatzpunkte für die Schlaganfall-Therapie beim Menschen bietet demnach ein Signalweg, der die Kalzium-Konzentration im Inneren der Astrozyten beeinflusst. Dr. Cordula Rakers und Prof. Gabor Petzold berichten darüber im „Journal of Clinical Investigation“.

Das Gehirn ist auf eine ständige Versorgung mit Sauerstoff angewiesen. Deshalb kann ein Schlaganfall - auch „Hirninfarkt“ genannt - schlimme Folgen haben. Unabhängig davon, ob durch eine Hirnblutung oder eine verstopfte Arterie ausgelöst: Sauerstoffmangel rafft Nervenzellen im Eiltempo dahin.


DZNE-Forscher haben durch Laboruntersuchungen herausgefunden, dass bei einem Schlaganfall bestimmte Hirnzellen in fataler Weise zusammenspielen. Schädliche elektrische Entladungen werden dadurch verstärkt. Diese mikroskopische Aufnahme zeigt Hirnzellen (blau und grün) einer Maus. Blutgefäße sind rot gefärbt. Quelle: DZNE/Cordula Rakers

Der Schlaganfall zählt daher zu den häufigsten Todesursachen und falls die Betroffenen überleben, können Lähmungen, Sprachschwierigkeiten oder andere Behinderungen zurückbleiben - je nachdem, welche Hirnbereiche verletzt wurden.

Fatalerweise kann sich die Schadenszone - in gewissem Umfang - immer weiter ausdehnen. Ursache dafür sind sogenannte Depolarisationswellen, die bereits Minuten nach einem Infarkt auftreten können - und in den Tagen danach immer wieder. Sie starten im Kerngebiet des Infarkts und überrollen das umliegende Gewebe wie eine Lawine. Diese elektrischen Entladungen setzen die Zellen unter lebensbedrohlichen Stress.

„Die Depolarisationswellen wandern bis in das gesunde Gewebe hinein. Mit jeder Welle kann sich das Infarktvolumen mehr und mehr vergrößern“, sagt Petzold. „Solche Entladungen treten im Übrigen nicht nur bei Schlaganfällen auf, sondern auch bei anderen schweren Hirnverletzungen. Insofern wäre eine Therapie für viele Erkrankungen von Bedeutung.“

Der Therapie bieten sich möglicherweise günstige Chancen, weil sich die Entladungen über mehrere Tage verteilen. Petzold: „Jede Welle ist potentiell gefährlich. Allerdings entstehen die Schäden erst nach und nach. Hier gibt es einen kumulativen Effekt. Eine Behandlung könnte daher positive Wirkung haben, auch wenn sie erst Tage nach dem Schlaganfall erfolgt. Das Zeitfenster zur Behandlung der Depolarisationswellen ist also möglicherweise größer, als bei den etablierten Therapien gegen Schlaganfall.“

Unheilvolle Wechselwirkung von Nervenzellen und Astrozyten

Die DZNE-Forscher fanden nun heraus, wie bei einer Depolarisationswelle verschiedene Geschehnisse und Zelltypen zusammenspielen und die Entladung verstärken. Eine entscheidende Rolle spielen dabei sogenannte Astrozyten. Diese Zellen sind gemeinsam mit den Nervenzellen des Gehirns zu einem Netzwerk verflochten und an diversen Stoffwechselprozessen beteiligt.

„Wenn die Nervenzellen depolarisieren, setzen sie große Mengen des Botenstoffs Glutamat frei. Das Glutamat diffundiert dann zu anderen Zellen, insbesondere zu benachbarten Astrozyten“, erläutert Petzold. „Das wusste man schon. Doch wir konnten nun zeigen, was im Anschluss passiert: Das Glutamat lässt die Konzentration an Kalzium innerhalb der Astrozyten in die Höhe schnellen. Infolgedessen setzen die Astrozyten ebenfalls Glutamat frei. Das kann dann wiederum auf Nervenzellen einwirken. So kommt ein Teufelskreis in Gang, der die Depolarisationswelle potenziert. Dabei wirken die Astrozyten als Verstärker.“

Die Neurowissenschaftler konnten allerdings auch nachweisen, dass Pharmaka diese Ereigniskette unterbrechen und den abnorm erhöhten Kalzium-Spiegel innerhalb der Astrozyten reduzieren können. „Bisher gibt es keine etablierte Therapie, die gezielt auf die Depolarisationswellen einwirkt. Unsere Ergebnisse zeigen, dass es möglich ist, die Häufigkeit und Schwere dieser Entladungen abzumildern, wenn man in den Kalzium-Stoffwechsel der Astrozyten eingreift. Prinzipiell könnte dies auch beim Menschen möglich sein. Das wäre ein neuartiger Ansatz für die Behandlung des Schlaganfalls“, so Petzold.

Originalveröffentlichung
„Astrocyte calcium mediates peri-infarct depolarizations in a rodent stroke model“, Cordula Rakers and Gabor C. Petzold, Journal of Clinical Investigation, DOI: http://dx.doi.org/10.1172/JCI89354

Weitere Informationen:

https://www.dzne.de/ueber-uns/presse/meldungen/2016/pressemitteilung-nr-24.html

Dr. Marcus Neitzert | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Mit grüner Chemie gegen Malaria
21.02.2018 | Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V.

nachricht Vom künstlichen Hüftgelenk bis zum Fahrradsattel
21.02.2018 | Frankfurt University of Applied Sciences

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Innovation im Leichtbaubereich: Belastbares Sandwich aus Aramid und Carbon

Die Entwicklung von Leichtbaustrukturen ist eines der zentralen Zukunftsthemen unserer Gesellschaft. Besonders in der Luftfahrtindustrie und in anderen Transportbereichen sind Leichtbaustrukturen gefragt. Sie ermöglichen Energieeinsparungen und reduzieren den Ressourcenverbrauch bei Treibstoffen und Material. Zum Einsatz kommen dabei Verbundmaterialien in der so genannten Sandwich-Bauweise. Diese bestehen aus zwei dünnen, steifen und hochfesten Deckschichten mit einer dazwischen liegenden dicken, vergleichsweise leichten und weichen Mittelschicht, dem Sandwich-Kern.

Aramidpapier ist ein etabliertes Material für solche Sandwichkerne. Sein mechanisches Strukturversagen ist jedoch noch unzureichend erforscht: Bislang fehlten...

Im Focus: Die Brücke, die sich dehnen kann

Brücken verformen sich, daher baut man normalerweise Dehnfugen ein. An der TU Wien wurde eine Technik entwickelt, die ohne Fugen auskommt und dadurch viel Geld und Aufwand spart.

Wer im Auto mit flottem Tempo über eine Brücke fährt, spürt es sofort: Meist rumpelt man am Anfang und am Ende der Brücke über eine Dehnfuge, die dort...

Im Focus: Eine Frage der Dynamik

Die meisten Ionenkanäle lassen nur eine ganz bestimmte Sorte von Ionen passieren, zum Beispiel Natrium- oder Kaliumionen. Daneben gibt es jedoch eine Reihe von Kanälen, die für beide Ionensorten durchlässig sind. Wie den Eiweißmolekülen das gelingt, hat jetzt ein Team um die Wissenschaftlerin Han Sun (FMP) und die Arbeitsgruppe von Adam Lange (FMP) herausgefunden. Solche nicht-selektiven Kanäle besäßen anders als die selektiven eine dynamische Struktur ihres Selektivitätsfilters, berichten die FMP-Forscher im Fachblatt Nature Communications. Dieser Filter könne zwei unterschiedliche Formen ausbilden, die jeweils nur eine der beiden Ionensorten passieren lassen.

Ionenkanäle sind für den Organismus von herausragender Bedeutung. Wenn zum Beispiel Sinnesreize wahrgenommen, ans Gehirn weitergeleitet und dort verarbeitet...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Erste integrierte Schaltkreise (IC) aus Plastik

Erstmals ist es einem Forscherteam am Max-Planck-Institut (MPI) für Polymerforschung in Mainz gelungen, einen integrierten Schaltkreis (IC) aus einer monomolekularen Schicht eines Halbleiterpolymers herzustellen. Dies erfolgte in einem sogenannten Bottom-Up-Ansatz durch einen selbstanordnenden Aufbau.

In diesem selbstanordnenden Aufbauprozess ordnen sich die Halbleiterpolymere als geordnete monomolekulare Schicht in einem Transistor an. Transistoren sind...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

Tag der Seltenen Erkrankungen – Deutsche Leberstiftung informiert über seltene Lebererkrankungen

21.02.2018 | Veranstaltungen

Digitalisierung auf dem Prüfstand: Hochkarätige Konferenz zu Empowerment in der agilen Arbeitswelt

20.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Kameratechnologie in Fahrzeugen: Bilddaten latenzarm komprimiert

21.02.2018 | Messenachrichten

Mit grüner Chemie gegen Malaria

21.02.2018 | Biowissenschaften Chemie

Periimplantitis: BMBF fördert zahnärztliches Verbund-Projekt mit 1,1 Millionen Euro

21.02.2018 | Förderungen Preise

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics