Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Schlaganfall: Hirnzellen verstärken schädliche Entladungen

20.12.2016

Bei einem Schlaganfall kann der geschädigte Hirnbereich infolge elektrischer Entladungen immer weiter anwachsen. Bonner Forscher des DZNE haben die Mechanismen solcher „Depolarisationswellen“ an Mäusen untersucht und herausgefunden, dass bestimmte Hirnzellen – sogenannte Astrozyten – die fatalen Entladungen potenzieren. Die Studienergebnisse deuten zugleich auf etwaige Gegenmaßnahmen hin: Mögliche Ansatzpunkte für die Schlaganfall-Therapie beim Menschen bietet demnach ein Signalweg, der die Kalzium-Konzentration im Inneren der Astrozyten beeinflusst. Dr. Cordula Rakers und Prof. Gabor Petzold berichten darüber im „Journal of Clinical Investigation“.

Das Gehirn ist auf eine ständige Versorgung mit Sauerstoff angewiesen. Deshalb kann ein Schlaganfall - auch „Hirninfarkt“ genannt - schlimme Folgen haben. Unabhängig davon, ob durch eine Hirnblutung oder eine verstopfte Arterie ausgelöst: Sauerstoffmangel rafft Nervenzellen im Eiltempo dahin.


DZNE-Forscher haben durch Laboruntersuchungen herausgefunden, dass bei einem Schlaganfall bestimmte Hirnzellen in fataler Weise zusammenspielen. Schädliche elektrische Entladungen werden dadurch verstärkt. Diese mikroskopische Aufnahme zeigt Hirnzellen (blau und grün) einer Maus. Blutgefäße sind rot gefärbt. Quelle: DZNE/Cordula Rakers

Der Schlaganfall zählt daher zu den häufigsten Todesursachen und falls die Betroffenen überleben, können Lähmungen, Sprachschwierigkeiten oder andere Behinderungen zurückbleiben - je nachdem, welche Hirnbereiche verletzt wurden.

Fatalerweise kann sich die Schadenszone - in gewissem Umfang - immer weiter ausdehnen. Ursache dafür sind sogenannte Depolarisationswellen, die bereits Minuten nach einem Infarkt auftreten können - und in den Tagen danach immer wieder. Sie starten im Kerngebiet des Infarkts und überrollen das umliegende Gewebe wie eine Lawine. Diese elektrischen Entladungen setzen die Zellen unter lebensbedrohlichen Stress.

„Die Depolarisationswellen wandern bis in das gesunde Gewebe hinein. Mit jeder Welle kann sich das Infarktvolumen mehr und mehr vergrößern“, sagt Petzold. „Solche Entladungen treten im Übrigen nicht nur bei Schlaganfällen auf, sondern auch bei anderen schweren Hirnverletzungen. Insofern wäre eine Therapie für viele Erkrankungen von Bedeutung.“

Der Therapie bieten sich möglicherweise günstige Chancen, weil sich die Entladungen über mehrere Tage verteilen. Petzold: „Jede Welle ist potentiell gefährlich. Allerdings entstehen die Schäden erst nach und nach. Hier gibt es einen kumulativen Effekt. Eine Behandlung könnte daher positive Wirkung haben, auch wenn sie erst Tage nach dem Schlaganfall erfolgt. Das Zeitfenster zur Behandlung der Depolarisationswellen ist also möglicherweise größer, als bei den etablierten Therapien gegen Schlaganfall.“

Unheilvolle Wechselwirkung von Nervenzellen und Astrozyten

Die DZNE-Forscher fanden nun heraus, wie bei einer Depolarisationswelle verschiedene Geschehnisse und Zelltypen zusammenspielen und die Entladung verstärken. Eine entscheidende Rolle spielen dabei sogenannte Astrozyten. Diese Zellen sind gemeinsam mit den Nervenzellen des Gehirns zu einem Netzwerk verflochten und an diversen Stoffwechselprozessen beteiligt.

„Wenn die Nervenzellen depolarisieren, setzen sie große Mengen des Botenstoffs Glutamat frei. Das Glutamat diffundiert dann zu anderen Zellen, insbesondere zu benachbarten Astrozyten“, erläutert Petzold. „Das wusste man schon. Doch wir konnten nun zeigen, was im Anschluss passiert: Das Glutamat lässt die Konzentration an Kalzium innerhalb der Astrozyten in die Höhe schnellen. Infolgedessen setzen die Astrozyten ebenfalls Glutamat frei. Das kann dann wiederum auf Nervenzellen einwirken. So kommt ein Teufelskreis in Gang, der die Depolarisationswelle potenziert. Dabei wirken die Astrozyten als Verstärker.“

Die Neurowissenschaftler konnten allerdings auch nachweisen, dass Pharmaka diese Ereigniskette unterbrechen und den abnorm erhöhten Kalzium-Spiegel innerhalb der Astrozyten reduzieren können. „Bisher gibt es keine etablierte Therapie, die gezielt auf die Depolarisationswellen einwirkt. Unsere Ergebnisse zeigen, dass es möglich ist, die Häufigkeit und Schwere dieser Entladungen abzumildern, wenn man in den Kalzium-Stoffwechsel der Astrozyten eingreift. Prinzipiell könnte dies auch beim Menschen möglich sein. Das wäre ein neuartiger Ansatz für die Behandlung des Schlaganfalls“, so Petzold.

Originalveröffentlichung
„Astrocyte calcium mediates peri-infarct depolarizations in a rodent stroke model“, Cordula Rakers and Gabor C. Petzold, Journal of Clinical Investigation, DOI: http://dx.doi.org/10.1172/JCI89354

Weitere Informationen:

https://www.dzne.de/ueber-uns/presse/meldungen/2016/pressemitteilung-nr-24.html

Dr. Marcus Neitzert | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Überleben auf der Schneeball-Erde
21.09.2017 | Max-Planck-Institut für Biogeochemie, Jena

nachricht Hochpräzise Verschaltung in der Hirnrinde
21.09.2017 | Max-Planck-Institut für Hirnforschung

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Höher - schneller - weiter: Der Faktor Mensch in der Luftfahrt

20.09.2017 | Veranstaltungen

Wälder unter Druck: Internationale Tagung zur Rolle von Wäldern in der Landschaft an der Uni Halle

20.09.2017 | Veranstaltungen

7000 Teilnehmer erwartet: 69. Urologen-Kongress startet heute in Dresden

20.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Granulare Materie blitzschnell im Bild

21.09.2017 | Verfahrenstechnologie

Hochpräzise Verschaltung in der Hirnrinde

21.09.2017 | Biowissenschaften Chemie

Überleben auf der Schneeball-Erde

21.09.2017 | Biowissenschaften Chemie