Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Schlafkrankheit: Erreger beherrscht drei verschiedene Schwimmarten

20.06.2011
Wissenschaftler entschlüsseln die genauen Fortbewegungsmuster des Parasiten Trypanosoma.

Der Erreger der Schlafkrankheit, die in Afrika und Südamerika jährlich tausende Todesopfer fordert, gehört zu den mobilen Einzellern: Eigenständig schwimmt er durch den Blutkreislauf seines Wirtes, bis er im letzten Stadium der Krankheit die Blut-Hirn-Schranke überwindet und ins Gehirn seines Opfers vordringt.

Um die tödliche Krankheit gezielt zu bekämpfen, versuchen Wissenschaftler die Fortbewegungsweise der Erreger genau zu verstehen. Forschern vom Max-Planck-Institut für Dynamik und Selbstorganisation (MPIDS) sowie den Universitäten Würzburg, Göttingen und Basel ist es nun gelungen, drei verschiedene Arten der Fortbewegung des Einzellers zu identifizieren. Zudem konnten sie erstmals zeigen, dass diese mit der Form und Steifheit der Parasiten zusammenhängen.

Einzeller, die sich selbstständig fortbewegen können, sind keine Seltenheit: Kolibakterien etwa wickeln ihre Geißeln zu einem Bündel auf, um mit vereinter Kraft gezielt vorwärts zu schwimmen; Spermien katapultieren sich durch das Schlagen des Schwanzes nach vorne. Bei den einzelligen Trypanosomen - Parasiten, welche die afrikanische Schlafkrankheit auslösen - ist der genaue Bewegungsablauf bisher nicht bekannt. Die Ursache dafür ist ein deutlich komplizierterer „Körperbau“: Die Geißel, die wahrscheinlich als Hauptmotor dient, schließt nicht etwa wie beim Spermium schwanzartig an den Zellkörper an. Stattdessen ist sie auf der gesamten Länge der Zelle mit ihr verbunden (siehe Abbildung 1). Fest steht nur, dass die Fortbewegungsmethode der Trypanosomen äußerst effizient ist: Mit Geschwindigkeiten zwischen 20 und 40 Mikrometern pro Sekunde schwimmen sie durch die Blutbahn ihrer Opfer.

Die deutsch-schweizerische Forschergruppe konnte nun zeigen, dass der Erreger Trypanosoma brucei brucei, der Rinder befällt, zu drei verschiedenen Fortbewegungsarten fähig ist. Unterm Mikroskop verfolgten die Wissenschaftler die genauen Pfade, die einzelne Zellen in einem Zeitraum von einigen Sekunden innerhalb einer Nährlösung einschlugen, und werteten diese statistisch aus. Die Parasiten ließen sich daraufhin in drei Gruppen einteilen. Während sich die einen mehrere Sekunden lang in ein und dieselbe Richtung bewegten, torkelten die anderen wie betrunken wahllos mal in diese, mal in jene Richtung. „Unterm Strich kommen sie so kaum von der Stelle“, beschreibt Sravanti Uppaluri vom MPIDS diese Gruppe. Eine dritte Klasse wechselt zwischen beiden Fortbewegungsmustern.

Um zu untersuchen, warum die jeweilige Zelle eine bestimmte „Gangart“ bevorzugt, war ein noch genauerer – und vor allem schnellerer – Blick auf die Trypanosomen nötig. „Zunächst mussten wir dazu eine Zelle über einen bestimmten Zeitraum verfolgen und das Fortbewegungsmuster identifizieren“, so Sravanti Uppaluri, welche die anspruchsvollen Analysen durchführte. Danach konnte die Wissenschaftlerin mithilfe von Hochgeschwindigkeitsmikroskopen, die eine schnelle Bildabfolge von mehreren tausend Aufnahmen in der Sekunde und eine höhere räumliche Auflösung ermöglichen, einen genaueren Blick auf die anatomischen Eigenheiten der Zellen werfen. Durch Messen des Abstandes zwischen beiden Zellenden ergab sich, dass die zielgerichteten Schwimmer eine gestrecktere Form haben und somit steifer sind als ihre torkelnden „Brüder“. Die torkelnden Trypanosomen hingegen erwiesen sich als eher gekrümmt, was auf einen flexibleren Zellkörper schließen lässt.

Der Grund für diese anatomischen Unterschiede innerhalb einer Gruppe von Trypanosomen ist bisher unklar. „Es ist denkbar, dass es sich um verschiedene Stadien im Lebenszyklus des Parasiten handelt“, sagt Thomas Pfohl von der Universität in Basel. Die gezielte Vorwärtsbewegung könnte zur letzten Phase gehören, in der sich der Erreger in das Gewebe des Opfers bohrt. Eine andere Erklärungsmöglichkeit wäre, dass die Einzeller speziell bei der Suche nach Nahrung die gerichtete Bewegungsstrategie wählen.

Vor einigen Jahren bereits hatten die Würzburger Forscher zusammen mit ihren Kollegen vom MPIDS entdeckt, dass rasches Schwimmen den Trypanosomen hilft, Antikörpern zu entgehen. Denn die Strömung, die dabei über die glatte Oberfläche der Erreger streicht, reißt die Antikörper stromabwärts in Richtung Zellmund, wo sie „gefressen“ werden.

In einem nächsten Schritt wollen die Wissenschaftler deshalb untersuchen, in welcher „Gangart“ diese Überlebensstrategie besonders gut oder besonders schlecht funktioniert. „Möglicherweise sind die Trypanosomen, die wahllos hin und her torkeln, angreifbarer als ihre stromlinienförmigeren Kollegen“, so Pfohl. Das genaue Verständnis der Bewegungsmuster könnte so helfen, einen Ansatz zu finden, die Parasiten gezielt zu bekämpfen.

Dr. Birgit Krummheuer | Max-Planck-Institut
Weitere Informationen:
http://www.mpg.de
http://www.mpg.de/4348989/Trypanosomen.mov

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Software mit Grips
20.04.2018 | Max-Planck-Institut für Hirnforschung, Frankfurt am Main

nachricht Einen Schritt näher an die Wirklichkeit
20.04.2018 | Max-Planck-Institut für Entwicklungsbiologie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Software mit Grips

Ein computergestütztes Netzwerk zeigt, wie die Ionenkanäle in der Membran von Nervenzellen so verschiedenartige Fähigkeiten wie Kurzzeitgedächtnis und Hirnwellen steuern können

Nervenzellen, die auch dann aktiv sind, wenn der auslösende Reiz verstummt ist, sind die Grundlage für ein Kurzzeitgedächtnis. Durch rhythmisch aktive...

Im Focus: Der komplette Zellatlas und Stammbaum eines unsterblichen Plattwurms

Von einer einzigen Stammzelle zur Vielzahl hochdifferenzierter Körperzellen: Den vollständigen Stammbaum eines ausgewachsenen Organismus haben Wissenschaftlerinnen und Wissenschaftler aus Berlin und München in „Science“ publiziert. Entscheidend war der kombinierte Einsatz von RNA- und computerbasierten Technologien.

Wie werden aus einheitlichen Stammzellen komplexe Körperzellen mit sehr unterschiedlichen Funktionen? Die Differenzierung von Stammzellen in verschiedenste...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Verbesserte Stabilität von Kunststoff-Leuchtdioden

Polymer-Leuchtdioden (PLEDs) sind attraktiv für den Einsatz in großflächigen Displays und Lichtpanelen, aber ihre begrenzte Stabilität verhindert die Kommerzialisierung. Wissenschaftler aus dem Max-Planck-Institut für Polymerforschung (MPIP) in Mainz haben jetzt die Ursachen der Instabilität aufgedeckt.

Bildschirme und Smartphones, die gerollt und hochgeklappt werden können, sind Anwendungen, die in Zukunft durch die Entwicklung von polymerbasierten...

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungen

124. Internistenkongress in Mannheim: Internisten rücken Altersmedizin in den Fokus

19.04.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Juni 2018

17.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Grösster Elektrolaster der Welt nimmt Arbeit auf

20.04.2018 | Interdisziplinäre Forschung

Bilder magnetischer Strukturen auf der Nano-Skala

20.04.2018 | Physik Astronomie

Kieler Forschende entschlüsseln neuen Baustein in der Entwicklung des globalen Klimas

20.04.2018 | Geowissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics