Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Schlafkrankheit: Erreger beherrscht drei verschiedene Schwimmarten

20.06.2011
Wissenschaftler entschlüsseln die genauen Fortbewegungsmuster des Parasiten Trypanosoma.

Der Erreger der Schlafkrankheit, die in Afrika und Südamerika jährlich tausende Todesopfer fordert, gehört zu den mobilen Einzellern: Eigenständig schwimmt er durch den Blutkreislauf seines Wirtes, bis er im letzten Stadium der Krankheit die Blut-Hirn-Schranke überwindet und ins Gehirn seines Opfers vordringt.

Um die tödliche Krankheit gezielt zu bekämpfen, versuchen Wissenschaftler die Fortbewegungsweise der Erreger genau zu verstehen. Forschern vom Max-Planck-Institut für Dynamik und Selbstorganisation (MPIDS) sowie den Universitäten Würzburg, Göttingen und Basel ist es nun gelungen, drei verschiedene Arten der Fortbewegung des Einzellers zu identifizieren. Zudem konnten sie erstmals zeigen, dass diese mit der Form und Steifheit der Parasiten zusammenhängen.

Einzeller, die sich selbstständig fortbewegen können, sind keine Seltenheit: Kolibakterien etwa wickeln ihre Geißeln zu einem Bündel auf, um mit vereinter Kraft gezielt vorwärts zu schwimmen; Spermien katapultieren sich durch das Schlagen des Schwanzes nach vorne. Bei den einzelligen Trypanosomen - Parasiten, welche die afrikanische Schlafkrankheit auslösen - ist der genaue Bewegungsablauf bisher nicht bekannt. Die Ursache dafür ist ein deutlich komplizierterer „Körperbau“: Die Geißel, die wahrscheinlich als Hauptmotor dient, schließt nicht etwa wie beim Spermium schwanzartig an den Zellkörper an. Stattdessen ist sie auf der gesamten Länge der Zelle mit ihr verbunden (siehe Abbildung 1). Fest steht nur, dass die Fortbewegungsmethode der Trypanosomen äußerst effizient ist: Mit Geschwindigkeiten zwischen 20 und 40 Mikrometern pro Sekunde schwimmen sie durch die Blutbahn ihrer Opfer.

Die deutsch-schweizerische Forschergruppe konnte nun zeigen, dass der Erreger Trypanosoma brucei brucei, der Rinder befällt, zu drei verschiedenen Fortbewegungsarten fähig ist. Unterm Mikroskop verfolgten die Wissenschaftler die genauen Pfade, die einzelne Zellen in einem Zeitraum von einigen Sekunden innerhalb einer Nährlösung einschlugen, und werteten diese statistisch aus. Die Parasiten ließen sich daraufhin in drei Gruppen einteilen. Während sich die einen mehrere Sekunden lang in ein und dieselbe Richtung bewegten, torkelten die anderen wie betrunken wahllos mal in diese, mal in jene Richtung. „Unterm Strich kommen sie so kaum von der Stelle“, beschreibt Sravanti Uppaluri vom MPIDS diese Gruppe. Eine dritte Klasse wechselt zwischen beiden Fortbewegungsmustern.

Um zu untersuchen, warum die jeweilige Zelle eine bestimmte „Gangart“ bevorzugt, war ein noch genauerer – und vor allem schnellerer – Blick auf die Trypanosomen nötig. „Zunächst mussten wir dazu eine Zelle über einen bestimmten Zeitraum verfolgen und das Fortbewegungsmuster identifizieren“, so Sravanti Uppaluri, welche die anspruchsvollen Analysen durchführte. Danach konnte die Wissenschaftlerin mithilfe von Hochgeschwindigkeitsmikroskopen, die eine schnelle Bildabfolge von mehreren tausend Aufnahmen in der Sekunde und eine höhere räumliche Auflösung ermöglichen, einen genaueren Blick auf die anatomischen Eigenheiten der Zellen werfen. Durch Messen des Abstandes zwischen beiden Zellenden ergab sich, dass die zielgerichteten Schwimmer eine gestrecktere Form haben und somit steifer sind als ihre torkelnden „Brüder“. Die torkelnden Trypanosomen hingegen erwiesen sich als eher gekrümmt, was auf einen flexibleren Zellkörper schließen lässt.

Der Grund für diese anatomischen Unterschiede innerhalb einer Gruppe von Trypanosomen ist bisher unklar. „Es ist denkbar, dass es sich um verschiedene Stadien im Lebenszyklus des Parasiten handelt“, sagt Thomas Pfohl von der Universität in Basel. Die gezielte Vorwärtsbewegung könnte zur letzten Phase gehören, in der sich der Erreger in das Gewebe des Opfers bohrt. Eine andere Erklärungsmöglichkeit wäre, dass die Einzeller speziell bei der Suche nach Nahrung die gerichtete Bewegungsstrategie wählen.

Vor einigen Jahren bereits hatten die Würzburger Forscher zusammen mit ihren Kollegen vom MPIDS entdeckt, dass rasches Schwimmen den Trypanosomen hilft, Antikörpern zu entgehen. Denn die Strömung, die dabei über die glatte Oberfläche der Erreger streicht, reißt die Antikörper stromabwärts in Richtung Zellmund, wo sie „gefressen“ werden.

In einem nächsten Schritt wollen die Wissenschaftler deshalb untersuchen, in welcher „Gangart“ diese Überlebensstrategie besonders gut oder besonders schlecht funktioniert. „Möglicherweise sind die Trypanosomen, die wahllos hin und her torkeln, angreifbarer als ihre stromlinienförmigeren Kollegen“, so Pfohl. Das genaue Verständnis der Bewegungsmuster könnte so helfen, einen Ansatz zu finden, die Parasiten gezielt zu bekämpfen.

Dr. Birgit Krummheuer | Max-Planck-Institut
Weitere Informationen:
http://www.mpg.de
http://www.mpg.de/4348989/Trypanosomen.mov

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Auf der molekularen Streckbank
24.02.2017 | Technische Universität München

nachricht Sicherungskopie im Zentralhirn: Wie Fruchtfliegen ein Ortsgedächtnis bilden
24.02.2017 | Johannes Gutenberg-Universität Mainz

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: „Vernetzte Autonome Systeme“ von acatech und DFKI auf der CeBIT

Auf der IT-Messe CeBIT vom 20. bis 24. März präsentieren acatech – Deutsche Akademie der Technikwissenschaften und das Deutsche Forschungszentrum für Künstliche Intelligenz (DFKI) in Kooperation mit der Deutschen Messe AG vernetzte Autonome Systeme. In Halle 12 am Stand B 63 erwarten die Besucherinnen und Besucher unter anderem Roboter, die Hand in Hand mit Menschen zusammenarbeiten oder die selbstständig gefährliche Umgebungen erkunden.

Auf der IT-Messe CeBIT vom 20. bis 24. März präsentieren acatech – Deutsche Akademie der Technikwissenschaften und das Deutsche Forschungszentrum für...

Im Focus: Kühler Zwerg und die sieben Planeten

Erdgroße Planeten mit gemäßigtem Klima in System mit ungewöhnlich vielen Planeten entdeckt

In einer Entfernung von nur 40 Lichtjahren haben Astronomen ein System aus sieben erdgroßen Planeten entdeckt. Alle Planeten wurden unter Verwendung von boden-...

Im Focus: Mehr Sicherheit für Flugzeuge

Zwei Entwicklungen am Lehrgebiet Rechnerarchitektur der FernUniversität in Hagen können das Fliegen sicherer machen: ein Flugassistenzsystem, das bei einem totalen Triebwerksausfall zum Einsatz kommt, um den Piloten ein sicheres Gleiten zu einem Notlandeplatz zu ermöglichen, und ein Assistenzsystem für Segelflieger, das ihnen das Erreichen größerer Höhen erleichtert. Präsentiert werden sie von Prof. Dr.-Ing. Wolfram Schiffmann auf der Internationalen Fachmesse für Allgemeine Luftfahrt AERO vom 5. bis 8. April in Friedrichshafen.

Zwei Entwicklungen am Lehrgebiet Rechnerarchitektur der FernUniversität in Hagen können das Fliegen sicherer machen: ein Flugassistenzsystem, das bei einem...

Im Focus: HIGH-TOOL unterstützt Verkehrsplanung in Europa

Forschung am Karlsruher Institut für Technologie (KIT) unterstützt die Europäische Kommission bei der Verkehrsplanung: Anhand des neuen Modells HIGH-TOOL lässt sich bewerten, wie verkehrspolitische Maßnahmen langfristig auf Wirtschaft, Gesellschaft und Umwelt wirken. HIGH-TOOL ist ein frei zugängliches Modell mit Modulen für Demografie, Wirtschaft und Ressourcen, Fahrzeugbestand, Nachfrage im Personen- und Güterverkehr sowie Umwelt und Sicherheit. An dem nun erfolgreich abgeschlossenen EU-Projekt unter der Koordination des KIT waren acht Partner aus fünf Ländern beteiligt.

Forschung am Karlsruher Institut für Technologie (KIT) unterstützt die Europäische Kommission bei der Verkehrsplanung: Anhand des neuen Modells HIGH-TOOL lässt...

Im Focus: Zinn in der Photodiode: nächster Schritt zur optischen On-Chip-Datenübertragung

Schon lange suchen Wissenschaftler nach einer geeigneten Lösung, um optische Komponenten auf einem Computerchip zu integrieren. Doch Silizium und Germanium allein – die stoffliche Basis der Chip-Produktion – sind als Lichtquelle kaum geeignet. Jülicher Physiker haben nun gemeinsam mit internationalen Partnern eine Diode vorgestellt, die neben Silizium und Germanium zusätzlich Zinn enthält, um die optischen Eigenschaften zu verbessern. Das Besondere daran: Da alle Elemente der vierten Hauptgruppe angehören, sind sie mit der bestehenden Silizium-Technologie voll kompatibel.

Schon lange suchen Wissenschaftler nach einer geeigneten Lösung, um optische Komponenten auf einem Computerchip zu integrieren. Doch Silizium und Germanium...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Aufbruch: Forschungsmethoden in einer personalisierten Medizin

24.02.2017 | Veranstaltungen

Österreich erzeugt erstmals Erdgas aus Sonnen- und Windenergie

24.02.2017 | Veranstaltungen

Big Data Centrum Ostbayern-Südböhmen startet Veranstaltungsreihe

23.02.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Fraunhofer HHI auf dem Mobile World Congress mit VR- und 5G-Technologien

24.02.2017 | Messenachrichten

MWC 2017: 5G-Hauptstadt Berlin

24.02.2017 | Messenachrichten

Auf der molekularen Streckbank

24.02.2017 | Biowissenschaften Chemie