Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Schilddrüsen-Karzinom: Biomarker verrät Tumorursache

07.10.2014

Die Expression des Proteins CLIP2* gibt Auskunft darüber, ob ein papilläres Schilddrüsen-Karziom strahleninduziert oder sporadisch entstanden ist. Damit haben Wissenschaftler des Helmholtz Zentrums München einen neuen Biomarker für die Ursachendiagnostik dieser bösartigen Tumorerkrankung identifiziert. Ihre Ergebnisse sind in der Fachzeitschrift ‚Oncogene‘ veröffentlicht.

CLIP2 dient als Strahlenmarker: Nach einer Strahlenbelastung durch radioaktives Iod sind sowohl die Genaktivität als auch die Proteinexpression erhöht, wie die Wissenschaftler Studien nachweisen konnten.


Immunhistochemischer Nachweis von CLIP2 in einem sporadischen (links) und einem strahlenassoziierten (rechts) Schilddrüsenkarzinom. Quelle: Helmholtz Zentrum München

Insbesondere für die Entstehung eines Tumors in der Schilddrüse nach einer Strahlenexposition scheint CLIP2 von Bedeutung zu sein. Das Team um Martin Selmansberger, Dr. Julia Heß, Dr. Kristian Unger und Prof. Dr. Horst Zitzelsberger von der Abteilung Strahlenzytogenetik am Helmholtz Zentrum München fand einen Zusammenhang zwischen hohen CLIP2-Werten und der Strahlenvorgeschichte bei Patienten mit papillärem Schilddrüsen-Karzinom.

„In unserer Studie konnten wir die strahlenassoziierte CLIP2-Expression auf Proteinebene in drei unterschiedlichen Gruppen von Patienten mit Schilddrüsen-Karzinom nachweisen“, sagt Erstautor Selmansberger. Die Forschungsarbeit wurde am Helmholtz Zentrum München in Kooperation mit dem Institut für Strahlenschutz und der Abteilung Analytische Pathologie erstellt.

Strahlenmarker CLIP2 erlaubt Ursachenunterscheidung und Risikoabschätzung

„CLIP2 dient daher als Strahlenmarker und erlaubt es uns, zwischen strahleninduzierten und sporadischen Schilddrüsenkarzinomen zu unterscheiden,“ ergänzt Studienleiterin Heß. Die Wissenschaftler haben in ihren Untersuchungen ein standardisiertes Verfahren entwickelt, um CLIP2 nachzuweisen.

„Durch diesen Biomarker können wir sowohl Rückschlüsse auf die Mechanismen der Entstehung eines solchen Tumors ziehen, als auch beurteilen, welches Risiko für Schilddrüsenkrebs nach einer hohen Strahlenbelastung, wie beispielsweise einem Strahlenunfall, besteht,“ so Heß.

Der Schwerpunkt der Gesundheitsforschung am Helmholtz Zentrum München liegt auf den großen Volkskrankheiten. Neben Diabetes und Lungenerkrankungen zählen dazu auch Krebserkrankungen. Ziel des Helmholtz Zentrums München ist es, Ergebnisse aus der Grundlagenforschung schnell weiterzuentwickeln, um konkreten Nutzen für die Gesellschaft zu erbringen.

Weitere Informationen

*CAP-GLY domain containing linker protein 2. Die genaue Funktion von CLIP2 bei der Entstehung von Schilddrüsen-Karzinomen ist noch nicht bekannt. Die Rekonstruktion des Gen-regulatorischen Netzwerks lässt aber darauf schließen, dass CLIP2 an fundamentalen Prozessen der Krebsentstehung beteiligt ist.

Original-Publikation:
Selmansberger, M. et al. (2014). CLIP2 as radiation biomarker in papillary thyroid carcinoma, Oncogene, doi: 10.1038/onc.2014.311

Link zur Fachpublikation http://www.nature.com/onc/journal/vaop/ncurrent/full/onc2014311a.html

Das Helmholtz Zentrum München verfolgt als Deutsches Forschungszentrum für Gesundheit und Umwelt das Ziel, personalisierte Medizin für die Diagnose, Therapie und Prävention weit verbreiteter Volkskrankheiten wie Diabetes mellitus und Lungenerkrankungen zu entwickeln. Dafür untersucht es das Zusammenwirken von Genetik, Umweltfaktoren und Lebensstil. Der Hauptsitz des Zentrums liegt in Neuherberg im Norden Münchens. Das Helmholtz Zentrum München beschäftigt rund 2.200 Mitarbeiter und ist Mitglied der Helmholtz-Gemeinschaft, der 18 naturwissenschaftlich-technische und medizinisch-biologische Forschungszentren mit rund 34.000 Beschäftigten angehören. http://www.helmholtz-muenchen.de/index.html

Die selbstständige Abteilung Strahlenzytogenetik (ZYTO) untersucht strahleninduzierte Chromosomen- und DNA-Schäden in Zellsystemen und menschlichen Tumoren. Im Mittelpunkt steht die Aufklärung von Mechanismen der Strahlenkarzinogenese und -empfindlichkeit von Tumorzellen. Ziel ist es, Biomarker für den Nachweis strahleninduzierter Tumoren für die personalisierte Strahlentherapie zur Stratifizierung von Patienten zu finden. ZYTO gehört dem Department of Radiation Sciences (DRS) an. http://www.helmholtz-muenchen.de/zyto/index.html


Presseanfragen
Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Abteilung Kommunikation, Ingolstädter Landstraße 1, 85764 Neuherberg, Tel.: +49 89 3187-2238, E-Mail: presse@helmholtz-muenchen.de

Fachlicher Ansprechpartner
Dr. Julia Heß, Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Abteilung Strahlenzytogenetik, Ingolstädter Landstr. 1, 85764 Neuherberg - Tel.: 089-3187-3517 - E-Mail: julia.hess@helmholtz-muenchen.de

Weitere Informationen:

http://www.helmholtz-muenchen.de/aktuelles/uebersicht/pressemitteilungnews/artic...

Susanne Eichacker | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Krebs erfolgreich mit Fieber behandeln
20.04.2018 | Technische Hochschule Mittelhessen

nachricht Wasserbewegung als Hinweis auf den Zustand von Tumoren
19.04.2018 | Gesellschaft Deutscher Chemiker e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Verbesserte Stabilität von Kunststoff-Leuchtdioden

Polymer-Leuchtdioden (PLEDs) sind attraktiv für den Einsatz in großflächigen Displays und Lichtpanelen, aber ihre begrenzte Stabilität verhindert die Kommerzialisierung. Wissenschaftler aus dem Max-Planck-Institut für Polymerforschung (MPIP) in Mainz haben jetzt die Ursachen der Instabilität aufgedeckt.

Bildschirme und Smartphones, die gerollt und hochgeklappt werden können, sind Anwendungen, die in Zukunft durch die Entwicklung von polymerbasierten...

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gammastrahlungsblitze aus Plasmafäden

Neuartige hocheffiziente und brillante Quelle für Gammastrahlung: Anhand von Modellrechnungen haben Physiker des Heidelberger MPI für Kernphysik eine neue Methode für eine effiziente und brillante Gammastrahlungsquelle vorgeschlagen. Ein gigantischer Gammastrahlungsblitz wird hier durch die Wechselwirkung eines dichten ultra-relativistischen Elektronenstrahls mit einem dünnen leitenden Festkörper erzeugt. Die reichliche Produktion energetischer Gammastrahlen beruht auf der Aufspaltung des Elektronenstrahls in einzelne Filamente, während dieser den Festkörper durchquert. Die erreichbare Energie und Intensität der Gammastrahlung eröffnet neue und fundamentale Experimente in der Kernphysik.

Die typische Wellenlänge des Lichtes, die mit einem Objekt des Mikrokosmos wechselwirkt, ist umso kürzer, je kleiner dieses Objekt ist. Für Atome reicht dies...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Wie schwingt ein Molekül, wenn es berührt wird?

Physiker aus Regensburg, Kanazawa und Kalmar untersuchen Einfluss eines äußeren Kraftfeldes

Physiker der Universität Regensburg (Deutschland), der Kanazawa University (Japan) und der Linnaeus University in Kalmar (Schweden) haben den Einfluss eines...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungen

124. Internistenkongress in Mannheim: Internisten rücken Altersmedizin in den Fokus

19.04.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Juni 2018

17.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Nachhaltige und innovative Lösungen

19.04.2018 | HANNOVER MESSE

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungsnachrichten

Auf dem Weg zur optischen Kernuhr

19.04.2018 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics