Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Schalter entdeckt - Forscher erklären Regulierung der Hormonproduktion in der Schilddrüse

08.01.2016

Obwohl Schilddrüsenerkrankungen in der Bevölkerung sehr häufig vorkommen, konnte die Wissenschaft bisher eine grundlegende Frage dazu nicht ausreichend beantworten: Wie wird die Produktion von Hormonen in der Schilddrüse eigentlich molekular reguliert? Wissenschaftler der Universität Leipzig haben nun unter der Leitung von Prof. Dr. Torsten Schöneberg in einer Studie wichtige Erkenntnisse über diesen Prozess gewonnen und sie in dieser Woche im Fachblatt "The Journal of Biological Chemistry" veröffentlicht. Die Resultate ihrer Arbeit liefern auch neue Ansätze, wie Erkrankungen der Schilddrüse und auch anderer, ähnlich funktionierender Drüsen therapiert werden könnten.

Millionen Menschen in aller Welt sind von Schilddrüsenerkrankungen betroffen. Zu den bekanntesten gehören die Schilddrüsenüberfunktion, wie bei der Basedow Erkrankung, und die Schilddrüsenunterfunktion mit Kropfbildung.

Sehr viele Menschen mit Schilddrüsenfunktionsstörungen wissen nicht einmal davon, jedoch können diese für Herzrhythmusstörungen, Gewichtsprobleme, Unfruchtbarkeit (Infertilität) und psychische Störungen verantwortlich sein. Deshalb werden auch Neugeborene routinemäßig auf Schilddrüsenfunktionsstörungen untersucht.

Die Schilddrüse ist eine Hormonfabrik, die unter normalen Bedingungen durch das Schilddrüsen-stimulierende Hormon TSH reguliert wird. TSH bindet an einen speziellen Rezeptor, den TSH-Rezeptor, der sich an der Oberfläche von Schilddrüsenzellen befindet.

Dieses TSH-Signal führt zu einer Produktion und Freisetzung von Schilddrüsenhormonen, genannt Thyroxin und Triiodthyronin. Diese beiden Hormone sind für nahezu alle Prozesse im Körper - Stoffwechsel, Entwicklung und Wachstum, Reproduktion - essentiell.

Manchmal jedoch können auch Autoantikörper oder Mutationen, die die gleiche Wirkung auf den TSH-Rezeptor haben, die Schilddrüse unkontrolliert aktivieren. Dies führt dann zu einer übermäßigen Hormonproduktion mit zum Teil fatalen Folgen für den Gesamtorganismus.

Ein Wissenschaftlerteam vom Institut für Biochemie der Medizinischen Fakultät der Universität Leipzig widmete sich nun der Frage, wie TSH, Autoantikörper und Mutationen unabhängig voneinander die gleiche aktivierende Wirkung auf die Schilddrüse haben können. Die Antwort dafür lag im TSH-Rezeptor selbst.

"Wir fanden eine kurze Peptidsequenz - wir nennen diese p10, da sie aus zehn Aminosäuren besteht - innerhalb des TSH-Rezeptors. Bei Bindung des TSH oder von Autoantikörpern funktioniert diese interne Sequenz als Aktivator für den Rezeptor. Der Rezeptor schaltet sich also selber an, wenn TSH, ein Autoantikörper oder eine Mutation ihn dazu bewegen", sagt Studienleiter Schöneberg. "Bei den meisten anderen Hormon-Rezeptorsystemen im Körper aktiviert das Hormon den Rezeptor direkt", erklärt die Nachwuchswissenschaftlerin und Erstautorin der Arbeit, Antje Brüser.

Diese neu gewonnenen Informationen über den Mechanismus des An- und Ausschaltens dieser Rezeptorfamilie können Wissenschaftler nutzen, um gezielt therapeutische Substanzen zu entwickeln. "Zum Beispiel ist es uns gelungen, mit modifizierten p10 Peptiden die Aktivierung des TSH-Rezeptors durch Autoantikörper zu blockieren.

Auch wenn man diese Peptide noch nicht therapeutisch einsetzen kann, so zeigen sie, dass es prinzipiell möglich ist, solche Rezeptorfehlfunktionen direkt zu beeinflussen", erläutert Schöneberg. Diese Ergebnisse eröffnen nun die Möglichkeit zur Entwicklung von Pharmaka, die bei Schilddrüsenerkrankungen und Fertilitätsstörungen ihren Einsatz finden könnten.

Originaltitel der Veröffentlichung in "The Journal of Biological Chemistry":

"The Activation Mechanism of Glycoprotein Hormone Receptors with Implications in the Cause and Therapy of Endocrine Diseases" doi: 10.1074/jbc.M115.701102


Weitere Informationen:

Prof. Dr. Torsten Schöneberg
Institut für Biochemie
Medizinische Fakultät
Telefon: +49 341 97-22150
E-Mail: torsten.schoeneberg@medizin.uni-leipzig.de
Web: http://www.uni-leipzig.de/~biochem/mbch_cms

Weitere Informationen:

http://www.jbc.org/content/early/2015/11/20/jbc.M115.701102.abstract

Susann Huster | Universität Leipzig

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Undercover im Kampf gegen Tuberkulose
12.12.2017 | Gesellschaft Deutscher Chemiker e.V.

nachricht Tumoren ordentlich einheizen
12.12.2017 | Gesellschaft Deutscher Chemiker e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Neue Einblicke in die Materie: Hochdruckforschung in Kombination mit NMR-Spektroskopie

Forschern der Universität Bayreuth und des Karlsruhe Institute of Technology (KIT) ist es erstmals gelungen, die magnetische Kernresonanzspektroskopie (NMR) in Experimenten anzuwenden, bei denen Materialproben unter sehr hohen Drücken – ähnlich denen im unteren Erdmantel – analysiert werden. Das in der Zeitschrift Science Advances vorgestellte Verfahren verspricht neue Erkenntnisse über Elementarteilchen, die sich unter hohen Drücken oft anders verhalten als unter Normalbedingungen. Es wird voraussichtlich technologische Innovationen fördern, aber auch neue Einblicke in das Erdinnere und die Erdgeschichte, insbesondere die Bedingungen für die Entstehung von Leben, ermöglichen.

Diamanten setzen Materie unter Hochdruck

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Stabile Quantenbits

Physiker aus Konstanz, Princeton und Maryland schaffen ein stabiles Quantengatter als Grundelement für den Quantencomputer

Meilenstein auf dem Weg zum Quantencomputer: Wissenschaftler der Universität Konstanz, der Princeton University sowie der University of Maryland entwickeln ein...

Im Focus: Realer Versuch statt virtuellem Experiment: Erfolgreiche Prüfung von Nanodrähten

Mit neuartigen Experimenten enträtseln Forscher des Helmholtz-Zentrums Geesthacht und der Technischen Universität Hamburg, warum winzige Metallstrukturen extrem fest sind

Ultraleichte und zugleich extrem feste Werkstoffe – poröse Nanomaterialien aus Metall versprechen hochinteressante Anwendungen unter anderem für künftige...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Innovative Strategien zur Bekämpfung von parasitären Würmern

08.12.2017 | Veranstaltungen

Hohe Heilungschancen bei Lymphomen im Kindesalter

07.12.2017 | Veranstaltungen

Der Roboter im Pflegeheim – bald Wirklichkeit?

05.12.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

E-Mobilität: Neues Hybridspeicherkonzept soll Reichweite und Leistung erhöhen

12.12.2017 | Energie und Elektrotechnik

Wie Brände die Tundra langfristig verändern

12.12.2017 | Ökologie Umwelt- Naturschutz

Gefäßregeneration: Wie sich Wunden schließen

12.12.2017 | Medizin Gesundheit