Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Schalter aus einem Molekül

09.03.2017

Ein Forscherteam mit Konstanzer Beteiligung stellt einen molekularen Schalter mit bisher unerreichter Reproduzierbarkeit vor

Bei der aktuell noch fortschreitenden Miniaturisierung elektronischer Bauteile besteht eine fundamentale Grenze, sobald Dimensionen einzelner Atome erreicht werden. Aus diesem Grund beschäftigt sich das Forschungsgebiet der molekularen Elektronik mit der Realisierung funktionaler elektrischer Schaltkreise, die aus einzelnen Atomen oder Molekülen aufgebaut sind, sowie der Suche nach neuartigen Materialien und Bauelementen, die diesen Zwecken dienen.


Molekularer Kontakt, der sowohl mechanisch als auch elektrostatisch an (links) und aus (rechts) geschaltet werden kann.


Dr. Safa G. Bahoosh und Jun.-Prof. Dr. Fabian Pauly.

Den theoretischen Physikern Jun.-Prof. Dr. Fabian Pauly und seiner Mitarbeiterin Dr. Safa G. Bahoosh gelang es, in einem Team aus experimentellen Physikern und Chemikern einen molekularen Schalter aus nur einem Molekül zu demonstrieren, der atomar exakt identisch beliebig oft reproduziert werden kann.

Grundlage ist ein eigens synthetisiertes Molekül mit speziellen Eigenschaften. Damit gelang ein weiterer Schritt auf dem Weg zur Verwirklichung der molekularen Elektronik. Die Ergebnisse sind im Online-Journal Nature Communications vom 9. März 2017 nachzulesen.

Fabian Pauly vergleicht das Molekül, das von Prof. Dr. Marcel Mayor an der Universität Basel (Schweiz) und dem Karlsruher Institut für Technologie (KIT) synthetisiert wurde, mit einem Ufo, das auf drei Beinen auf der Erdoberfläche steht und oben eine Art Kopf hat. An den drei „Beinen“ besitzt es Ankergruppen, so dass es fest an die Oberfläche bindet – in diesem Fall handelt es sich um eine Goldoberfläche.

Gleichzeitig trägt es am „Kopf“ eine von der Goldoberfläche weggerichtete Nitrilgruppe, die damit von der Oberfläche separiert ist. Eine zweite Elektrode, die Goldspitze eines Rastertunnelmikroskops, kann anbinden und den elektronischen Kontakt herstellen.

Dies ermöglicht schließlich den Stromfluss durch das Molekül. Mit der hochpräzisen Technik eines Rastertunnelmikroskops ist es nun erstmals für solch ein komplexes Dreibein-Molekül gelungen, an jeder Position über der Nitrilgruppe den Leitwert zu messen. Hierzu sind Längenkontrollen im Bereich von Pikometern erforderlich, dem billionsten Teil eines Meters.

Die Nitrilgruppe besitzt ein Dipolmoment, das heißt eine elektrische Plus-Minus-Ladung, was neben der mechanischen auch die Ansteuerung mit Hilfe elektrischer Felder erlaubt. Mit der Spannung zwischen den Elektroden lässt sich so die Höhe des Kopfes steuern, wie theoretische Rechnungen von Safa G. Bahoosh zeigen.

Wird ein positives Feld angelegt, kann der Kopf des Moleküls runtergedrückt werden, ist das angelegte Feld negativ, was durch Umpolung der angelegten Spannung erreicht wird, wird der Kopf nach oben bewegt. Der Kontakt kann auf diese Weise elektronisch hergestellt und wieder abgerissen werden. Damit lässt sich der Stromfluss an- und ausschalten.

„Das Schöne an der Arbeit ist: Wir haben damit einen definierten An- und Auszustand“, sagt Fabian Pauly. Bisherige Konzepte scheiterten oft daran, dass die elektronische Kontaktierung einzelner Moleküle schlecht kontrollierbar war und deshalb nur statistische Aussagen über das Verhalten des molekularen Kontakts erlaubte.

Auf diese Weise konnte erstmals ein solcher Kontakt zwischen einem Molekül und der Goldspitze des Rastertunnelmikroskops tausendfach sowohl mechanisch als auch elektrisch geöffnet und geschlossen werden, ohne dass plastische Verformungen auftraten.

Safa G. Bahoosh hat in der Arbeitsgruppe von Fabian Pauly anhand der Dichtefunktionaltheorie neben geometrischen Strukturen auch die elektrischen Leitwerte und die zu erhaltenden Bilder im Rastertunnelmikroskop theoretisch vorausberechnet. So konnte die Postdoktorandin, die gerade erfolgreich ihre eigene Stelle für die nächsten drei Jahre bei der Deutschen Forschungsgemeinschaft (DFG) eingeworben hat, bereits in ihrer Simulation die Gestalt des einzelnen Moleküls auf der Oberfläche vorhersagen.

Ihre Ergebnisse stimmten mit denen der Experimente am KIT überein. Dort wurde unter Leitung von Dr. Lukas Gerhard und Prof. Dr. Wulf Wulfhekel mit dem Rastertunnelmikroskop der Elektronentransport experimentell gemessen. Die theoretischen Simulationen erlauben in Kombination mit den systematischen Experimenten neue Erkenntnisse über Energien und Kräfte, die in einem molekularen Kontakt wirken.

Originalpublikation:
Lukas Gerhard, Kevin Edelmann, Jan Homberg, Michael Valášek, Safa G. Bahoosh, Maya Lukas, Fabian Pauly, Marcel Mayor & Wulf Wulfhekel: An electrically actuated molecular toggle switch. Nature Communications 9 March 2017
DOI: 10.1038/NCOMMS14672

Faktenübersicht:
• Die Studie wurde an der Universität Konstanz im Rahmen des Sonderforschungsbereichs (SFB) 767 „Controlled Nanosystems“ durchgeführt.
• Die Stelle der Konstanzer Co-Autorin Dr. Safa G. Bahoosh wird in den kommenden drei Jahren durch die Deutsche Forschungsgemeinschaft (DFG) finanziert.
• Die Juniorprofessur von Fabian Pauly wird durch die Carl-Zeiss-Stiftung gefördert.
• Rechenzeit für die numerischen Simulationen wurde unter anderem durch die Initiative für Hochleistungsrechnen des Landes Baden-Württemberg (bwHPC) zur Verfügung gestellt.

Hinweis an die Redaktionen:
Fotos können im Folgenden heruntergeladen werden:

https://cms.uni-konstanz.de/fileadmin/pi/fileserver/2017/Pauly-MToggleSwitch_FI1...
Bildunterschrift:
Molekularer Kontakt, der sowohl mechanisch als auch elektrostatisch an (links) und aus (rechts) geschaltet werden kann.

https://cms.uni-konstanz.de/fileadmin/pi/fileserver/2017/Pauly-Bahoosh-Uni-KN.jp...
Bildunterschrift:
Dr. Safa G. Bahoosh und Jun.-Prof. Dr. Fabian Pauly.

Kontakt:
Universität Konstanz
Kommunikation und Marketing
Telefon: + 49 7531 88-3603
E-Mail: kum@uni-konstanz.de

Julia Wandt | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Das Geheimnis der Sojabohne: Mainzer Forscher untersuchen Ölkörperchen in Sojabohnen
20.06.2018 | Max-Planck-Institut für Polymerforschung

nachricht Schlüsselmolekül des Alterns entdeckt
20.06.2018 | Deutsches Krebsforschungszentrum

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperaturgesteuerte Faser-Lichtquelle mit flüssigem Kern

Die moderne medizinische Bildgebung und neue spektroskopische Verfahren benötigen faserbasierte Lichtquellen, die breitbandiges Laserlicht im nahen und mittleren Infrarotbereich erzeugen. Wissenschaftlerinnen und Wissenschaftler des Leibniz-Instituts für Photonische Technologien Jena (Leibniz-IPHT) zeigen in einer aktuellen Veröffentlichung im renommierten Fachblatt Optica, dass sie die optischen Eigenschaften flüssigkeitsgefüllter Fasern und damit die Bandbreite des Laserlichts gezielt über die Umgebungstemperatur steuern können.

Das Besondere an den untersuchten Fasern ist ihr Kern. Er ist mit Kohlenstoffdisulfid gefüllt - einer flüssigen chemischen Verbindung mit hoher optischer...

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Revolution der Rohre

Forscher*innen des Instituts für Sensor- und Aktortechnik (ISAT) der Hochschule Coburg lassen Rohrleitungen, Schläuchen oder Behältern in Zukunft regelrecht Ohren wachsen. Sie entwickelten ein innovatives akustisches Messverfahren, um Ablagerungen in Rohren frühzeitig zu erkennen.

Rückstände in Abflussleitungen führen meist zu unerfreulichen Folgen. Ein besonderes Gefährdungspotential birgt der Biofilm – eine Schleimschicht, in der...

Im Focus: Überdosis Calcium

Nanokristalle beeinflussen die Differenzierung von Stammzellen während der Knochenbildung

Wissenschaftlerinnen und Wissenschaftler der Universitäten Freiburg und Basel haben einen Hauptschalter für die Regeneration von Knochengewebe identifiziert....

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

DFG unterstützt Kongresse und Tagungen im August 2018

20.06.2018 | Veranstaltungen

Hengstberger-Symposium zur Sternentstehung

19.06.2018 | Veranstaltungen

LymphomKompetenz KOMPAKT: Neues vom EHA2018

19.06.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

DFG unterstützt Kongresse und Tagungen im August 2018

20.06.2018 | Veranstaltungsnachrichten

Breitbandservices von DNS:NET erweitert

20.06.2018 | Unternehmensmeldung

Mit Parasiten infizierte Stichlinge beeinflussen Verhalten gesunder Artgenossen

20.06.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics