Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Sauropoden werden neu vermessen

06.10.2008
Pittsburgh, New York und Washington haben zumindest eines gemeinsam: Sie stellen in großen, naturkundlichen Museen Dinosaurier aus. Jan-Thomas Möller, Doktorand am Institut für Biologie und ihre Didaktik, wird im Oktober diese drei Museen besuchen, um Dinosaurierskelette zu vermessen.

Seine Forschungsergebnisse sollen dazu beitragen, Körperhaltung und Beweglichkeit der Dinosaurier zu rekonstruieren. Außerdem will er der Frage nachgehen, warum die Sauropoden so groß wurden.

Sauropoden waren pflanzenfressende Dinosaurier, die bis zum Ende der Kreidezeit auf der Erde lebten. Beeindruckend war ihre Körpergröße: Bis über 40 Meter lang und 18 Meter hoch konnten die Saurier werden. Doch schon das Gewicht ist strittig. "Ging man vor einigen Jahren noch bei diesen Größen von 100 Tonnen aus, so sprechen einige Fachleute heute von zwei Drittel dieses Gewichts", sagt Prof. Dr. Andreas Christian, Biologe an der Universität Flensburg. Doch nicht nur das Gewicht gibt Rätsel auf. Die grundsätzliche Frage, die sich Prof. Dr. Andreas Christian, Jan-Thomas Möller und Forscher einer internationalen Gruppe stellen, ist, warum es überhaupt zu diesem Gigantismus kam. Ein Stichwort heißt in diesem Zusammenhang Allometrie.

In der Allometrie misst man die Körpergrößen und setzt sie in Beziehung zu anderen biologischen Größen; man erkennt Zusammenhänge und Abweichungen vom "Normalen". Ein Phänomen ist die Abhängigkeit der Tiergröße von der Größe der Landmasse, auf der sie leben. Auf Inseln leben kleine, auf Kontinenten große Tiere. Die Sauropoden sind für die Landmasse, auf der sie wohnten, eigentlich zu groß. Jan Thomas Möller wird also versuchen herauszufinden, welchen biologischen Vorteil der Gigantismus hatte.

Dafür wird der 27-Jährige knapp zwei Wochen in den Museen verbringen und Skelette adulter und juveniler Tiere vermessen und wenn möglich auch 3D-Scans anfertigen. Zuhause am Computer wird er dann die Änderungen der Proportionen während des Wachstums der Tiere modellieren und versuchen, die Ursachen zu finden, die das immense Größenwachstum verursachten. Außerdem wird er die Halswirbelsäulen der ausgestorbenen Tiere genau vermessen, um danach im Vergleich mit lebenden langhalsigen Tieren Rückschlüsse zu ziehen auf die Beweglichkeit des Halses und auf dessen Haltung. Denn diese interpretieren Wissenschaftler nicht immer gleich. Dabei macht es in Rekonstruktionen einen Unterschied, ob ein Sauropode den Hals waagerecht zum Boden bewegt, oder ob er mit aufrechter Kopfhaltung durch das simulierte Erdmittelalter schreitet.

Jan-Thomas Möller und Prof. Dr. Andreas Christian sind Mitglieder einer internationalen DFG-Forschergruppe, die sich seit vier Jahren mit dem Gigantismus bei Sauropoden beschäftigt. Im November findet an der Universität Bonn ein Kongress dieser Forschergruppe statt.

Kontakt:
Prof. Dr. Andreas Christian, Universität Flensburg, Tel, 0461 / 805 2313 (zusätzlich unter 2321), E-Mail: christian@uni-flensburg.de

Jan-Thomas Möller, Universität Flensburg, Tel. 0461 / 805 2324, jtmoeller@uni-flensburg.de

Dr. Helge Möller | idw
Weitere Informationen:
http://www.uni-flensburg.de/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Forscher sehen Biomolekülen bei der Arbeit zu
05.12.2016 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Wie sich Zellen gegen Salmonellen verteidigen
05.12.2016 | Goethe-Universität Frankfurt am Main

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wie sich Zellen gegen Salmonellen verteidigen

Bioinformatiker der Goethe-Universität haben das erste mathematische Modell für einen zentralen Verteidigungsmechanismus der Zelle gegen das Bakterium Salmonella entwickelt. Sie können ihren experimentell arbeitenden Kollegen damit wertvolle Anregungen zur Aufklärung der beteiligten Signalwege geben.

Jedes Jahr sind Salmonellen weltweit für Millionen von Infektionen und tausende Todesfälle verantwortlich. Die Körperzellen können sich aber gegen die...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Im Focus: Durchbruch in der Diabetesforschung: Pankreaszellen produzieren Insulin durch Malariamedikament

Artemisinine, eine zugelassene Wirkstoffgruppe gegen Malaria, wandelt Glukagon-produzierende Alpha-Zellen der Bauchspeicheldrüse (Pankreas) in insulinproduzierende Zellen um – genau die Zellen, die bei Typ-1-Diabetes geschädigt sind. Das haben Forscher des CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften im Rahmen einer internationalen Zusammenarbeit mit modernsten Einzelzell-Analysen herausgefunden. Ihre bahnbrechenden Ergebnisse werden in Cell publiziert und liefern eine vielversprechende Grundlage für neue Therapien gegen Typ-1 Diabetes.

Seit einigen Jahren hatten sich Forscher an diesem Kunstgriff versucht, der eine simple und elegante Heilung des Typ-1 Diabetes versprach: Die vom eigenen...

Im Focus: Makromoleküle: Mit Licht zu Präzisionspolymeren

Chemikern am Karlsruher Institut für Technologie (KIT) ist es gelungen, den Aufbau von Präzisionspolymeren durch lichtgetriebene chemische Reaktionen gezielt zu steuern. Das Verfahren ermöglicht die genaue, geplante Platzierung der Kettengliedern, den Monomeren, entlang von Polymerketten einheitlicher Länge. Die präzise aufgebauten Makromoleküle bilden festgelegte Eigenschaften aus und eignen sich möglicherweise als Informationsspeicher oder synthetische Biomoleküle. Über die neuartige Synthesereaktion berichten die Wissenschaftler nun in der Open Access Publikation Nature Communications. (DOI: 10.1038/NCOMMS13672)

Chemische Reaktionen lassen sich durch Einwirken von Licht bei Zimmertemperatur auslösen. Die Forscher am KIT nutzen diesen Effekt, um unter Licht die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Flüssiger Wasserstoff im freien Fall

05.12.2016 | Maschinenbau

Forscher sehen Biomolekülen bei der Arbeit zu

05.12.2016 | Biowissenschaften Chemie

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungsnachrichten