Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wenn Sauerstoff Proteinen zum Verhängnis wird

12.10.2011
Journal of Biological Chemistry: Sauerstoff zerstört Enzymfunktion in drei Schritten / RUB-Biologen veröffentlichen erstes zeitaufgelöstes Modell

Warum Enzyme, die zur technischen Herstellung von Wasserstoff genutzt werden, so empfindlich gegenüber Sauerstoff sind, berichten Wissenschaftler der RUB-Fakultät für Biologie und Biotechnologie im Journal of Biological Chemistry.


Mit der Swiss Light Source am Paul Scheerer-Institut in der Nähe von Zürich untersuchten Bochumer und Berliner Forscher das Hydrogenase-Protein, dessen dreidimensionale Struktur in der Abbildung zu sehen ist. Foto: Camilla Lambertz


Sauerstoff schaltet die Hydrogenase in drei Phasen aus (links). Je länger das Enzym dem Sauerstoff ausgesetzt ist, desto mehr Sauerstoffteilchen binden sich an die Eisenatome der Hydrogenase (blau). Dies führt dazu, dass die Eisenatome weniger Bindungen mit anderen Atomen eingehen (grün, schwarz) und so ihrer Funktion nicht mehr nachkommen können. Die rechte Teilabbildung zeigt den hypothetischen Mechanismus der Inaktivierung. Sauerstoff (O=O) bindet sich an das Zweieisenzentrum, wodurch eine aggressive Sauerstoffspezies entsteht. Diese greift das Viereisenzentrum [4Fe4S] an, was die Fähigkeit zur Wasserstoffbildung unterbindet.

Gemeinsam mit Berliner Forschern untersuchten sie mit spektroskopischen Methoden den Zeitverlauf der Vorgänge, die zur Inaktivierung der Enzymfunktion in so genannten Hydrogenasen führen. „Hydrogenasen könnten von herausragender Bedeutung sein, um Wasserstoff mit Hilfe von biologischen oder chemischen Katalysatoren zu gewinnen“, erklärt Camilla Lambertz aus der RUB-Arbeitsgruppe Photobiotechnologie. „Ihre hohe Sauerstoffempfindlichkeit stellt allerdings ein großes Problem dar. Unsere Ergebnisse können helfen, in Zukunft robustere Enzyme zu entwickeln.“

Sauerstoff als Freund und Feind

Für die meisten Tiere und Pflanzen ist Sauerstoff überlebensnotwendig, doch wirkt er in zu hohen Konzentrationen auf viele Lebewesen giftig und einige Organismen können sogar nur ganz ohne Sauerstoff existieren. Die Sensibilität gegenüber Sauerstoff findet man auch auf der Ebene der Proteine. So ist eine Vielzahl von Enzymen, z.B. Hydrogenasen, bekannt, die durch Sauerstoff irreversibel zerstört werden. Hydrogenasen sind biologische Katalysatoren, die Protonen und Elektronen in technisch nutzbaren Wasserstoff umwandeln. Das RUB-Team um Prof. Dr. Thomas Happe erforscht sogenannte [FeFe]-Hydrogenasen, die besonders viel Wasserstoff produzieren können. Die Bildung von Wasserstoff findet u.a. an zwei speziellen Eisenatomen des Enzyms statt, die gemeinsam mit anderen Atomen das reaktive Zentrum formen.

Sauerstoff greift Eisenzentren an

Gemeinsam mit der Arbeitsgruppe von Dr. Michael Haumann in Berlin fanden die Forscher heraus, dass Sauerstoff sich an das Zweieisenzentrum der Hydrogenase bindet und dadurch einen anderen Bereich des Enzyms aus vier weiteren Eisenatomen ausschaltet. In dem vom BMBF geförderten Forschungsprojekt zeigten sie erstmals die verschiedenen Phasen des Inaktivierungsprozesses mit der so genannten Röntgenabsorptionsspektroskopie. Für die spezielle Art der Messung nutzen die Wissenschaftler die Synchrotronstrahlungsquelle Swiss Light Source in der Schweiz, die besonders starke Röntgenstrahlen erzeugt und somit die Charakterisierung von Metallzentren in Proteinen erlaubt. So bestimmten die Forscher unter anderem die chemische Natur der Eisenzentren und den Abstand zu den Nachbaratomen mit atomarer Auflösung.

Inaktivierung in drei Stufen

Das Team der Bochumer und Berliner Wissenschaftler setzte ein neues experimentelles Protokoll ein. Sie brachten die Hydrogenaseproben erst für einige Sekunden bis Minuten und zuletzt für einige Stunden mit Sauerstoff in Kontakt und unterbanden dann alle weiteren Reaktionen durch Tiefgefrieren in flüssigem Stickstoff. Aus den anschließend gewonnenen spektroskopischen Daten erstellten sie ein Modell für einen dreistufigen Prozess der Inaktivierung. Laut Modell bindet zunächst ein Sauerstoffmolekül an das Zweieisenzentrum der Hydrogenase, woraufhin eine aggressive Sauerstoffspezies entsteht. Diese greift in der folgenden Phase das Viereisenzentrum an und modifiziert es. Im letzten Schritt binden weitere Sauerstoffmoleküle und der gesamte Komplex zerfällt. „Der ganze Vorgang beinhaltet also mehrere aufeinanderfolgende Reaktionen, die zeitlich klar getrennt auftreten“, so Lambertz. „Die Geschwindigkeit des Gesamtprozesses wird möglicherweise durch den Schritt bestimmt, in dem die aggressive Sauerstoffspezies vom Zwei- zum Viereisenzentrum wandert. Wir bereiten gerade weitere Experimente vor, um das zu prüfen.“

Titelaufnahme

C. Lambertz, N. Leidel, K.G.V. Havelius, J. Noth, P. Chernev, M. Winkler, T. Happe, M. Haumann (2011) O2-reactions at the six-iron active site (H-cluster) in [FeFe]-hydrogenase, Journal of Biological Chemistry, doi: 10.1074/jbc.M111.283648

Weitere Informationen

Camilla Lambertz, Arbeitsgruppe Photobiotechnologie, Fakultät für Biologie und Biotechnologie der Ruhr-Universität, 44780 Bochum, Tel.: 0234/32-24496

Camilla.Lambertz@rub.de

Thomas Happe, Arbeitsgruppe Photobiotechnologie, Fakultät für Biologie und Biotechnologie der Ruhr-Universität, 44780 Bochum, Tel.: 0234/32-27026

Thomas.Happe@rub.de

Redaktion: Dr. Julia Weiler

Dr. Josef König | idw
Weitere Informationen:
http://www.ruhr-uni-bochum.de/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Der Buche in die Gene schauen - Vollständiges Genom der Rotbuche entschlüsselt
11.12.2017 | Senckenberg Forschungsinstitut und Naturmuseen

nachricht Mit den Augen der Biene: Zoologe der Uni Graz entwickelt Verfahren zur Verbesserung dunkler Bilder
11.12.2017 | Karl-Franzens-Universität Graz

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neue Einblicke in die Materie: Hochdruckforschung in Kombination mit NMR-Spektroskopie

Forschern der Universität Bayreuth und des Karlsruhe Institute of Technology (KIT) ist es erstmals gelungen, die magnetische Kernresonanzspektroskopie (NMR) in Experimenten anzuwenden, bei denen Materialproben unter sehr hohen Drücken – ähnlich denen im unteren Erdmantel – analysiert werden. Das in der Zeitschrift Science Advances vorgestellte Verfahren verspricht neue Erkenntnisse über Elementarteilchen, die sich unter hohen Drücken oft anders verhalten als unter Normalbedingungen. Es wird voraussichtlich technologische Innovationen fördern, aber auch neue Einblicke in das Erdinnere und die Erdgeschichte, insbesondere die Bedingungen für die Entstehung von Leben, ermöglichen.

Diamanten setzen Materie unter Hochdruck

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Stabile Quantenbits

Physiker aus Konstanz, Princeton und Maryland schaffen ein stabiles Quantengatter als Grundelement für den Quantencomputer

Meilenstein auf dem Weg zum Quantencomputer: Wissenschaftler der Universität Konstanz, der Princeton University sowie der University of Maryland entwickeln ein...

Im Focus: Realer Versuch statt virtuellem Experiment: Erfolgreiche Prüfung von Nanodrähten

Mit neuartigen Experimenten enträtseln Forscher des Helmholtz-Zentrums Geesthacht und der Technischen Universität Hamburg, warum winzige Metallstrukturen extrem fest sind

Ultraleichte und zugleich extrem feste Werkstoffe – poröse Nanomaterialien aus Metall versprechen hochinteressante Anwendungen unter anderem für künftige...

Im Focus: Geburtshelfer und Wegweiser für Photonen

Gezielt Photonen erzeugen und ihren Weg kontrollieren: Das sollte mit einem neuen Design gelingen, das Würzburger Physiker für optische Antennen erarbeitet haben.

Atome und Moleküle können dazu gebracht werden, Lichtteilchen (Photonen) auszusenden. Dieser Vorgang verläuft aber ohne äußeren Eingriff ineffizient und...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Innovative Strategien zur Bekämpfung von parasitären Würmern

08.12.2017 | Veranstaltungen

Hohe Heilungschancen bei Lymphomen im Kindesalter

07.12.2017 | Veranstaltungen

Der Roboter im Pflegeheim – bald Wirklichkeit?

05.12.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Goldmedaille für die praktischen Ergebnisse der Forschungsarbeit bei Nutricard

11.12.2017 | Unternehmensmeldung

Nachwuchs knackt Nüsse - Azubis der Friedhelm Loh Group für Projekte prämiert

11.12.2017 | Unternehmensmeldung

Mit 3D-Zellkulturen gegen Krebsresistenzen

11.12.2017 | Medizin Gesundheit