Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Sand im Getriebe der Erbgut-Kopiermaschine

06.11.2013
Wissenschaftler der UMG finden Eiweißmolekül, mit dem Krebszellen angreifbarer für Chemotherapeutika werden. Veröffentlichung in PNAS.

Eine der größten Schwierigkeiten bei der Behandlung von Krebspatienten besteht darin, dass viele Tumoren unempfindlich gegen die angewandte Chemotherapie sind. Forscher weltweit arbeiten daran, die Widerstandsfähigkeit von Krebszellen gegenüber Chemotherapie zu senken.


Leuchtendes Erbgut: Wenn eine Zelle ihre DNA kopiert, kann sie markiert und im Mikroskop farbig sichtbar gemacht werden. An der Länge der gefärbten Abschnitte lässt sich ablesen, ob während des Kopiervorgangs Probleme aufgetreten sind. Bild: umg/Frederik Köpper

Ein internationales Forscherteam um Dr. Frederik Köpper, Cathrin Bierwirth und Prof. Dr. Matthias Dobbelstein am Institut für Molekulare Onkologie der Universitätsmedizin Göttingen (UMG) haben jetzt ein zelluläres Eiweißmolekül identifiziert, das die Widerstandsfähigkeit von Krebszellen maßgeblich beeinflusst. Das Eiweiß sorgt dafür, dass in Krebszellen die Herstellung von Kopien des Erbguts gebremst wird, wenn sie in Kontakt mit Chemotherapeutika kommen. So werden Krebszellen empfindlicher gegenüber Chemotherapie.

Beteiligt an den Untersuchungen waren weitere Forscher aus der UMG, aus der Medizinischen Hochschule Hannover, vom Karolinska Institute in Stockholm und von der Universität Kopenhagen. Das Projekt wurde u. a. durch die Wilhelm Sander-Stiftung finanziert. Die Ergebnisse sind jetzt in der Fachzeitschrift Proceedings of the National Academy of Sciences of the United States of America (PNAS) veröffentlicht.

Originalpublikation:
Köpper, F., Bierwirth, C., Schön, M., Kunze, M., Elvers, I., Kranz, D., Saini, P., Menon, M., Walter, D., Sørensen, C. S., Gaestel, M., Helleday, T., Schön, M. P., Dobbelstein, M.: Damage-induced DNA replication stalling relies on MAPK-activated protein kinase 2 activity. Proc. Natl Acad Sci U S A, 110(42):16856-16861

Viele Medikamente, die in der Chemotherapie eingesetzt werden, wirken, indem sie das Erbgut (DNA) von Tumorzellen schädigen. Nimmt die DNA ernsthaften Schaden, ist die Zelle nicht mehr lebensfähig. So sorgen Chemotherapeutika dafür, dass sich Krebszellen nicht mehr vermehren können und schließlich sterben. Das Wissenschaftlerteam an der Universitätsmedizin Göttingen hat nun herausgefunden, dass dabei ein Eiweiß mit dem Namen MK2 (MK2 steht für Mitogen activated protein kinase-activated protein kinase 2) eine besondere Rolle spielt. Es trägt dazu bei, dass Krebszellen sterben, wenn ihr Erbgut beschädigt wird. Wurde das Eiweiß MK2 aus den Zellen entfernt oder seine Aktivität blockiert, überlebten die Krebszellen besser.

Um die DNA der Krebszellen zu schädigen, benutzten die Forscher ultraviolettes Licht oder das Chemotherapeutikum Gemzitabin. Vor jeder Teilung müssen Zellen eine perfekte Kopie ihres Erbguts erstellen. Nur so geht bei der Teilung keine Information verloren. „Gemzitabin und einige andere Chemotherapeutika entfalten ihre Wirkung, indem sie diesen Kopiervorgang stören – wie Sand, der in einem Kopiergerät alle Rädchen zum Stehen bringt“, sagt Cathrin Bierwirth, eine der beiden Erst-Autoren der Publikation. Die Folge: Das Erbgut wird nicht vollständig kopiert. Die Krebszelle stirbt.

WIE STÖRT MK2 DEN KOPIERVORGANG?
Die Forscher vermuteten, dass das Eiweiß MK2 entscheidend dafür ist, wie gut Zellen bei der Kopie ihres Erbguts mit Störungen durch Gemzitabin umgehen können. Um dies zu überprüfen, nutzten die Forscher eine spezielle Technik, die sogenannten „DNA fiber assays“. Die DNA lässt sich damit bei der Kopie markieren und anschließend unter dem Mikroskop farbig sichtbar machen. „Anhand der Länge der gefärbten DNA-Abschnitte können wir nun feststellen, ob die Zellen ihr Erbgut in normaler Geschwindigkeit kopieren – oder ob das Kopiergerät hakt“, sagt Dr. Frederik Köpper, ebenfalls Erst-Autor der Publikation. Tatsächlich fanden die Forscher heraus: Zellen kopieren ihre DNA trotz Gemzitabin schneller, wenn die Aktivität von MK2 blockiert worden war.
WIE REGULIERT MK2 DIE KOPIERGESCHWINDIGKEIT?
Doch wie schafft es MK2, die Kopiergeschwindigkeit zu regulieren? Weitere Experimente ergaben, dass MK2 möglicherweise eine Gruppe von Eiweißen in der Zelle kontrolliert, die darauf spezialisiert sind, beschädigte DNA zu kopieren. Es handelt sich dabei um die sogenannten trans lesion synthesis-Polymerasen. Diese Eiweiße sind gewissermaßen größere Kopier-Rädchen, die sich trotz Sand im Kopiergerät drehen können und dafür sorgen, dass die Kopie gelingt. Die Wissenschaftler vermuten: MK2 verhindert, dass diese Eiweiße bei der DNA-Kopie helfen, und bewirkt so, dass die Zelle durch die Chemotherapie stirbt.

„Wir hoffen nun, dass sich diese Erkenntnisse eines Tages bei der Behandlung von Krebspatienten nutzen lassen. Dazu müssen aber zunächst Strategien entwickelt werden, um MK2 gezielt zu aktivieren. Möglicherweise könnten dann Krebszellen empfindlicher gegenüber bestimmten Chemotherapeutika gemacht werden“, sagt Prof. Dr. Matthias Dobbelstein, Senior-Autor der Publikation und Direktor des Instituts für Molekulare Onkologie der UMG.

WEITERE INFORMATIONEN
Universitätsmedizin Göttingen, Georg-August-Universität
Institut für Molekulare Onkologie
Prof. Dr. Matthias Dobbelstein
Telefon 0551 / 39-13860; mdobbel@gwdg.de

Stefan Weller | Uni Göttingen
Weitere Informationen:
http://www.universitaetsmedizin-goettingen.de/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Neurobiologie - Die Chemie der Erinnerung
21.11.2017 | Ludwig-Maximilians-Universität München

nachricht Diabetes: Immunsystem kann Insulin regulieren
21.11.2017 | Universität Basel

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Kleine Strukturen – große Wirkung

Innovative Schutzschicht für geringen Verbrauch künftiger Rolls-Royce Flugtriebwerke entwickelt

Gemeinsam mit Rolls-Royce Deutschland hat das Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS im Rahmen von zwei Vorhaben aus dem...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: Transparente Beschichtung für Alltagsanwendungen

Sport- und Outdoorbekleidung, die Wasser und Schmutz abweist, oder Windschutzscheiben, an denen kein Wasser kondensiert – viele alltägliche Produkte können von stark wasserabweisenden Beschichtungen profitieren. Am Karlsruher Institut für Technologie (KIT) haben Forscher um Dr. Bastian E. Rapp einen Werkstoff für solche Beschichtungen entwickelt, der sowohl transparent als auch abriebfest ist: „Fluoropor“, einen fluorierten Polymerschaum mit durchgehender Nano-/Mikrostruktur. Sie stellen ihn in Nature Scientific Reports vor. (DOI: 10.1038/s41598-017-15287-8)

In der Natur ist das Phänomen vor allem bei Lotuspflanzen bekannt: Wassertropfen perlen von der Blattoberfläche einfach ab. Diesen Lotuseffekt ahmen...

Im Focus: Ultrakalte chemische Prozesse: Physikern gelingt beispiellose Vermessung auf Quantenniveau

Wissenschaftler um den Ulmer Physikprofessor Johannes Hecker Denschlag haben chemische Prozesse mit einer beispiellosen Auflösung auf Quantenniveau vermessen. Bei ihrer wissenschaftlichen Arbeit kombinierten die Forscher Theorie und Experiment und können so erstmals die Produktzustandsverteilung über alle Quantenzustände hinweg - unmittelbar nach der Molekülbildung - nachvollziehen. Die Forscher haben ihre Erkenntnisse in der renommierten Fachzeitschrift "Science" publiziert. Durch die Ergebnisse wird ein tieferes Verständnis zunehmend komplexer chemischer Reaktionen möglich, das zukünftig genutzt werden kann, um Reaktionsprozesse auf Quantenniveau zu steuern.

Einer deutsch-amerikanischen Forschergruppe ist es gelungen, chemische Prozesse mit einer nie dagewesenen Auflösung auf Quantenniveau zu vermessen. Dadurch...

Im Focus: Leoniden 2017: Sternschnuppen im Anflug?

Gemeinsame Pressemitteilung der Vereinigung der Sternfreunde und des Hauses der Astronomie in Heidelberg

Die Sternschnuppen der Leoniden sind in diesem Jahr gut zu beobachten, da kein Mondlicht stört. Experten sagen für die Nächte vom 16. auf den 17. und vom 17....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Tagung widmet sich dem Thema Autonomes Fahren

21.11.2017 | Veranstaltungen

Neues Elektro-Forschungsfahrzeug am Institut für Mikroelektronische Systeme

21.11.2017 | Veranstaltungen

Raumfahrtkolloquium: Technologien für die Raumfahrt von morgen

21.11.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Wasserkühlung für die Erdkruste - Meerwasser dringt deutlich tiefer ein

21.11.2017 | Geowissenschaften

Eine Nano-Uhr mit präzisen Zeigern

21.11.2017 | Physik Astronomie

Zentraler Schalter

21.11.2017 | Biowissenschaften Chemie