Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Sand im Getriebe der Erbgut-Kopiermaschine

06.11.2013
Wissenschaftler der UMG finden Eiweißmolekül, mit dem Krebszellen angreifbarer für Chemotherapeutika werden. Veröffentlichung in PNAS.

Eine der größten Schwierigkeiten bei der Behandlung von Krebspatienten besteht darin, dass viele Tumoren unempfindlich gegen die angewandte Chemotherapie sind. Forscher weltweit arbeiten daran, die Widerstandsfähigkeit von Krebszellen gegenüber Chemotherapie zu senken.


Leuchtendes Erbgut: Wenn eine Zelle ihre DNA kopiert, kann sie markiert und im Mikroskop farbig sichtbar gemacht werden. An der Länge der gefärbten Abschnitte lässt sich ablesen, ob während des Kopiervorgangs Probleme aufgetreten sind. Bild: umg/Frederik Köpper

Ein internationales Forscherteam um Dr. Frederik Köpper, Cathrin Bierwirth und Prof. Dr. Matthias Dobbelstein am Institut für Molekulare Onkologie der Universitätsmedizin Göttingen (UMG) haben jetzt ein zelluläres Eiweißmolekül identifiziert, das die Widerstandsfähigkeit von Krebszellen maßgeblich beeinflusst. Das Eiweiß sorgt dafür, dass in Krebszellen die Herstellung von Kopien des Erbguts gebremst wird, wenn sie in Kontakt mit Chemotherapeutika kommen. So werden Krebszellen empfindlicher gegenüber Chemotherapie.

Beteiligt an den Untersuchungen waren weitere Forscher aus der UMG, aus der Medizinischen Hochschule Hannover, vom Karolinska Institute in Stockholm und von der Universität Kopenhagen. Das Projekt wurde u. a. durch die Wilhelm Sander-Stiftung finanziert. Die Ergebnisse sind jetzt in der Fachzeitschrift Proceedings of the National Academy of Sciences of the United States of America (PNAS) veröffentlicht.

Originalpublikation:
Köpper, F., Bierwirth, C., Schön, M., Kunze, M., Elvers, I., Kranz, D., Saini, P., Menon, M., Walter, D., Sørensen, C. S., Gaestel, M., Helleday, T., Schön, M. P., Dobbelstein, M.: Damage-induced DNA replication stalling relies on MAPK-activated protein kinase 2 activity. Proc. Natl Acad Sci U S A, 110(42):16856-16861

Viele Medikamente, die in der Chemotherapie eingesetzt werden, wirken, indem sie das Erbgut (DNA) von Tumorzellen schädigen. Nimmt die DNA ernsthaften Schaden, ist die Zelle nicht mehr lebensfähig. So sorgen Chemotherapeutika dafür, dass sich Krebszellen nicht mehr vermehren können und schließlich sterben. Das Wissenschaftlerteam an der Universitätsmedizin Göttingen hat nun herausgefunden, dass dabei ein Eiweiß mit dem Namen MK2 (MK2 steht für Mitogen activated protein kinase-activated protein kinase 2) eine besondere Rolle spielt. Es trägt dazu bei, dass Krebszellen sterben, wenn ihr Erbgut beschädigt wird. Wurde das Eiweiß MK2 aus den Zellen entfernt oder seine Aktivität blockiert, überlebten die Krebszellen besser.

Um die DNA der Krebszellen zu schädigen, benutzten die Forscher ultraviolettes Licht oder das Chemotherapeutikum Gemzitabin. Vor jeder Teilung müssen Zellen eine perfekte Kopie ihres Erbguts erstellen. Nur so geht bei der Teilung keine Information verloren. „Gemzitabin und einige andere Chemotherapeutika entfalten ihre Wirkung, indem sie diesen Kopiervorgang stören – wie Sand, der in einem Kopiergerät alle Rädchen zum Stehen bringt“, sagt Cathrin Bierwirth, eine der beiden Erst-Autoren der Publikation. Die Folge: Das Erbgut wird nicht vollständig kopiert. Die Krebszelle stirbt.

WIE STÖRT MK2 DEN KOPIERVORGANG?
Die Forscher vermuteten, dass das Eiweiß MK2 entscheidend dafür ist, wie gut Zellen bei der Kopie ihres Erbguts mit Störungen durch Gemzitabin umgehen können. Um dies zu überprüfen, nutzten die Forscher eine spezielle Technik, die sogenannten „DNA fiber assays“. Die DNA lässt sich damit bei der Kopie markieren und anschließend unter dem Mikroskop farbig sichtbar machen. „Anhand der Länge der gefärbten DNA-Abschnitte können wir nun feststellen, ob die Zellen ihr Erbgut in normaler Geschwindigkeit kopieren – oder ob das Kopiergerät hakt“, sagt Dr. Frederik Köpper, ebenfalls Erst-Autor der Publikation. Tatsächlich fanden die Forscher heraus: Zellen kopieren ihre DNA trotz Gemzitabin schneller, wenn die Aktivität von MK2 blockiert worden war.
WIE REGULIERT MK2 DIE KOPIERGESCHWINDIGKEIT?
Doch wie schafft es MK2, die Kopiergeschwindigkeit zu regulieren? Weitere Experimente ergaben, dass MK2 möglicherweise eine Gruppe von Eiweißen in der Zelle kontrolliert, die darauf spezialisiert sind, beschädigte DNA zu kopieren. Es handelt sich dabei um die sogenannten trans lesion synthesis-Polymerasen. Diese Eiweiße sind gewissermaßen größere Kopier-Rädchen, die sich trotz Sand im Kopiergerät drehen können und dafür sorgen, dass die Kopie gelingt. Die Wissenschaftler vermuten: MK2 verhindert, dass diese Eiweiße bei der DNA-Kopie helfen, und bewirkt so, dass die Zelle durch die Chemotherapie stirbt.

„Wir hoffen nun, dass sich diese Erkenntnisse eines Tages bei der Behandlung von Krebspatienten nutzen lassen. Dazu müssen aber zunächst Strategien entwickelt werden, um MK2 gezielt zu aktivieren. Möglicherweise könnten dann Krebszellen empfindlicher gegenüber bestimmten Chemotherapeutika gemacht werden“, sagt Prof. Dr. Matthias Dobbelstein, Senior-Autor der Publikation und Direktor des Instituts für Molekulare Onkologie der UMG.

WEITERE INFORMATIONEN
Universitätsmedizin Göttingen, Georg-August-Universität
Institut für Molekulare Onkologie
Prof. Dr. Matthias Dobbelstein
Telefon 0551 / 39-13860; mdobbel@gwdg.de

Stefan Weller | Uni Göttingen
Weitere Informationen:
http://www.universitaetsmedizin-goettingen.de/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Kontinentalrand mit Leckage
27.03.2017 | MARUM - Zentrum für Marine Umweltwissenschaften an der Universität Bremen

nachricht Neuen molekularen Botenstoff bei Lebererkrankungen entdeckt
27.03.2017 | Universitätsmedizin Mannheim

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Das anwachsende Ende der Ordnung

Physiker aus Konstanz weisen sogenannte Mermin-Wagner-Fluktuationen experimentell nach

Ein Kristall besteht aus perfekt angeordneten Teilchen, aus einer lückenlos symmetrischen Atomstruktur – dies besagt die klassische Definition aus der Physik....

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

Zweites Symposium 4SMARTS zeigt Potenziale aktiver, intelligenter und adaptiver Systeme

27.03.2017 | Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Fließender Übergang zwischen Design und Simulation

27.03.2017 | HANNOVER MESSE

Industrial Data Space macht neue Geschäftsmodelle möglich

27.03.2017 | HANNOVER MESSE

Neue Sicherheitstechnik ermöglicht Teamarbeit

27.03.2017 | HANNOVER MESSE