Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Salmonellen infizieren nicht nach Schema F

21.04.2011
Braunschweiger Forscher entdecken neuen Eindringmechanismus in Wirtszellen.

Wissenschaftler des Helmholtz-Zentrums für Infektionsforschung (HZI) in Braunschweig haben einen bisher unbekannten Infektionsmechanismus entdeckt, den sich Salmonellen beim Eindringen in Darmzellen zunutze machen: Sie lassen sich über spezielle Fasern der Wirtszellen sozusagen durch Muskelkraft in diese hineinziehen. Die Bakterien besitzen demnach komplexere Strategien zur Infektion als bisher vermutet.


Elektronenmikroskopische Aufnahme von Salmonellen.
Foto: Manfred Rohde, HZI

Nach Angaben der Weltgesundheitsorganisation steigt nicht nur die Zahl der Salmonelleninfektionen ständig – seit einigen Jahren nimmt auch der Schweregrad der Infektionen zu. Einer der Gründe dafür könnte in ihren ausgeklügelten Infektionsstrategien stecken. Diese erstaunliche Vielfalt in der Wahl der Infektionsmechanismen ist möglicherweise die Ursache dafür, dass Salmonellen gleich eine Vielzahl unterschiedlicher menschlicher Zelltypen und neben dem Menschen sogar eine Reihe weiterer Wirte befallen können.

„Salmonellen infizieren ihre Wirtszellen wohl nicht nur nach Schema F“, erklärt Theresia Stradal, die vor kurzem vom Braunschweiger Helmholtz-Zentrum an die Universität Münster berufen wurde. „Aber bisher kannte man nur einen einzigen Infektionsmechanismus – und auch den nicht in allen Details“, ergänzt Klemens Rottner, Professor an der Universität Bonn und zuvor ebenfalls am Helmholtz-Zentrum tätig.

Der Infektionsweg der Salmonellen zielt auf das Aktin-Zellskelett der Wirtszelle. Aktin bildet feine, sehr dynamische Faserstrukturen, die der Zelle Halt geben und sie gleichzeitig beweglich machen. Diese Fasern beziehungsweise Filamente werden ständig auf- und abgebaut. Das wichtigste Kernelement zum Aufbau der Aktinfasern ist der Arp2/3-Komplex.

Alle Zellausläufer und Aufwerfungen der Zellmembran sind von Aktinfasern erfüllt. Im bisher bekannten Infektionsweg nutzen Salmonellen den Arp2/3-Komplex, um in die Wirtszelle einzudringen: Sie aktivieren den Komplex und sorgen somit dafür, dass die Zelle Membranausstülpungen bildet, sogenannte „Ruffles“. Die Bakterien lassen sich von diesen „Ruffles“ umschließen und ins Zellinnere aufnehmen.

Im vergangenen Jahr konnten die Arbeitsgruppen um Theresia Stradal und Klemens Rottner zeigen, dass die Salmonellen auch ohne „Ruffles“ in das Zellinnere gelangen können. Damit haben sie ein lange gültiges Dogma in der Salmonellenforschung umgestoßen.

In der aktuellen Studie ist es den Braunschweiger Experten nun gelungen, einen bisher völlig unbekannten Infektionsmechanismus zu beschreiben, der in der aktuellen Ausgabe von Cell Host & Microbe veröffentlicht wird. Bei diesem neuen Infektionsweg manipulieren die Salmonellen zwar auch das Aktin-Zellskelett der Wirtszelle - diesmal aber nicht durch Neubildung von Filamenten, sondern durch ihre Wechselwirkung mit dem Motorprotein Myosin II. Das Wechselspiel zwischen Aktin und Myosin ist aus Muskelzellen gut bekannt. In einem Muskel, der sich aktiv zusammenzieht, verhaken sich Myosin- und Aktin-Bündel miteinander, gleiten aneinander vorbei und verkürzen so den Muskel: er kontrahiert.

In Epithelzellen ist das ähnlich. Aktin und Myosin bilden hier sogenannte Stressfasern, die den kontraktilen Fasern in Muskelzellen ähneln. Diese Stressfasern sind mit der Membranoberfläche verknüpft und ziehen während einer Infektion vermutlich einfach die Bakterien nach innen. Auch auf diese Weise hat die Salmonelle ihr Ziel erreicht – das Zellinnere. „Dieser Weg ist völlig unabhängig vom Arp2/3-Komplex - dem zentralen Signalmolekül des „klassischen Invasionsmechanismus“, betont Jan Hänisch, der dieses Projekt als Postdoc bearbeitet hat.

Veröffentlichung:
Activation of a RhoA/Myosin II-Dependent but Arp2/3 Complex-Independent Pathway Facilitates Salmonella Invasion. Hänisch J, Kölm R, Wozniczka M, Bumann D, Rottner K, Stradal TE. Cell Host Microbe. 2011 Apr 21;9(4):273-85.
Das Helmholtz-Zentrum für Infektionsforschung:
Am Helmholtz-Zentrum für Infektionsforschung untersuchen Wissenschaftler die Mechanismen von Infektionen und ihrer Abwehr. Was Bakterien oder Viren zu Krankheitserregern macht: Das zu verstehen soll den Schlüssel zur Entwicklung neuer Medikamente und Impfstoffe liefern. Das Helmholtz-Zentrum für Infektionsforschung (HZI) in Braunschweig ist eine von der Bundesrepublik Deutschland und dem Land Niedersachsen gemeinsam finanzierte Forschungseinrichtung in der Helmholtz-Gemeinschaft Deutscher Forschungszentren. Aufgabe des Zentrums ist es, biomedizinische Forschung auf dem Gebiet der Infektionsbiologie sowie deren klinische Anwendung und praktische Umsetzung zu betreiben.

Dr. Bastian Dornbach | Helmholtz-Zentrum
Weitere Informationen:
http://www.helmholtz-hzi.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress
23.02.2018 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

nachricht Wie Zellen unterschiedlich auf Stress reagieren
23.02.2018 | Max-Planck-Institut für molekulare Genetik

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics