Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Salmonellen infizieren nicht nach Schema F

21.04.2011
Braunschweiger Forscher entdecken neuen Eindringmechanismus in Wirtszellen.

Wissenschaftler des Helmholtz-Zentrums für Infektionsforschung (HZI) in Braunschweig haben einen bisher unbekannten Infektionsmechanismus entdeckt, den sich Salmonellen beim Eindringen in Darmzellen zunutze machen: Sie lassen sich über spezielle Fasern der Wirtszellen sozusagen durch Muskelkraft in diese hineinziehen. Die Bakterien besitzen demnach komplexere Strategien zur Infektion als bisher vermutet.


Elektronenmikroskopische Aufnahme von Salmonellen.
Foto: Manfred Rohde, HZI

Nach Angaben der Weltgesundheitsorganisation steigt nicht nur die Zahl der Salmonelleninfektionen ständig – seit einigen Jahren nimmt auch der Schweregrad der Infektionen zu. Einer der Gründe dafür könnte in ihren ausgeklügelten Infektionsstrategien stecken. Diese erstaunliche Vielfalt in der Wahl der Infektionsmechanismen ist möglicherweise die Ursache dafür, dass Salmonellen gleich eine Vielzahl unterschiedlicher menschlicher Zelltypen und neben dem Menschen sogar eine Reihe weiterer Wirte befallen können.

„Salmonellen infizieren ihre Wirtszellen wohl nicht nur nach Schema F“, erklärt Theresia Stradal, die vor kurzem vom Braunschweiger Helmholtz-Zentrum an die Universität Münster berufen wurde. „Aber bisher kannte man nur einen einzigen Infektionsmechanismus – und auch den nicht in allen Details“, ergänzt Klemens Rottner, Professor an der Universität Bonn und zuvor ebenfalls am Helmholtz-Zentrum tätig.

Der Infektionsweg der Salmonellen zielt auf das Aktin-Zellskelett der Wirtszelle. Aktin bildet feine, sehr dynamische Faserstrukturen, die der Zelle Halt geben und sie gleichzeitig beweglich machen. Diese Fasern beziehungsweise Filamente werden ständig auf- und abgebaut. Das wichtigste Kernelement zum Aufbau der Aktinfasern ist der Arp2/3-Komplex.

Alle Zellausläufer und Aufwerfungen der Zellmembran sind von Aktinfasern erfüllt. Im bisher bekannten Infektionsweg nutzen Salmonellen den Arp2/3-Komplex, um in die Wirtszelle einzudringen: Sie aktivieren den Komplex und sorgen somit dafür, dass die Zelle Membranausstülpungen bildet, sogenannte „Ruffles“. Die Bakterien lassen sich von diesen „Ruffles“ umschließen und ins Zellinnere aufnehmen.

Im vergangenen Jahr konnten die Arbeitsgruppen um Theresia Stradal und Klemens Rottner zeigen, dass die Salmonellen auch ohne „Ruffles“ in das Zellinnere gelangen können. Damit haben sie ein lange gültiges Dogma in der Salmonellenforschung umgestoßen.

In der aktuellen Studie ist es den Braunschweiger Experten nun gelungen, einen bisher völlig unbekannten Infektionsmechanismus zu beschreiben, der in der aktuellen Ausgabe von Cell Host & Microbe veröffentlicht wird. Bei diesem neuen Infektionsweg manipulieren die Salmonellen zwar auch das Aktin-Zellskelett der Wirtszelle - diesmal aber nicht durch Neubildung von Filamenten, sondern durch ihre Wechselwirkung mit dem Motorprotein Myosin II. Das Wechselspiel zwischen Aktin und Myosin ist aus Muskelzellen gut bekannt. In einem Muskel, der sich aktiv zusammenzieht, verhaken sich Myosin- und Aktin-Bündel miteinander, gleiten aneinander vorbei und verkürzen so den Muskel: er kontrahiert.

In Epithelzellen ist das ähnlich. Aktin und Myosin bilden hier sogenannte Stressfasern, die den kontraktilen Fasern in Muskelzellen ähneln. Diese Stressfasern sind mit der Membranoberfläche verknüpft und ziehen während einer Infektion vermutlich einfach die Bakterien nach innen. Auch auf diese Weise hat die Salmonelle ihr Ziel erreicht – das Zellinnere. „Dieser Weg ist völlig unabhängig vom Arp2/3-Komplex - dem zentralen Signalmolekül des „klassischen Invasionsmechanismus“, betont Jan Hänisch, der dieses Projekt als Postdoc bearbeitet hat.

Veröffentlichung:
Activation of a RhoA/Myosin II-Dependent but Arp2/3 Complex-Independent Pathway Facilitates Salmonella Invasion. Hänisch J, Kölm R, Wozniczka M, Bumann D, Rottner K, Stradal TE. Cell Host Microbe. 2011 Apr 21;9(4):273-85.
Das Helmholtz-Zentrum für Infektionsforschung:
Am Helmholtz-Zentrum für Infektionsforschung untersuchen Wissenschaftler die Mechanismen von Infektionen und ihrer Abwehr. Was Bakterien oder Viren zu Krankheitserregern macht: Das zu verstehen soll den Schlüssel zur Entwicklung neuer Medikamente und Impfstoffe liefern. Das Helmholtz-Zentrum für Infektionsforschung (HZI) in Braunschweig ist eine von der Bundesrepublik Deutschland und dem Land Niedersachsen gemeinsam finanzierte Forschungseinrichtung in der Helmholtz-Gemeinschaft Deutscher Forschungszentren. Aufgabe des Zentrums ist es, biomedizinische Forschung auf dem Gebiet der Infektionsbiologie sowie deren klinische Anwendung und praktische Umsetzung zu betreiben.

Dr. Bastian Dornbach | Helmholtz-Zentrum
Weitere Informationen:
http://www.helmholtz-hzi.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Zirkuläre RNA wird in Proteine übersetzt
24.03.2017 | Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft

nachricht Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen
24.03.2017 | Universität Bayreuth

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungsnachrichten

Förderung des Instituts für Lasertechnik und Messtechnik in Ulm mit rund 1,63 Millionen Euro

24.03.2017 | Förderungen Preise

TU-Bauingenieure koordinieren EU-Projekt zu Recycling-Beton von über sieben Millionen Euro

24.03.2017 | Förderungen Preise