RWTH-Biologen bekämpfen den Sojabohnen-Rost

Doch Umweltkatastrophen wie Dürren oder Schädlingsepidemien gefährden Ernten und damit die Versorgung vieler Menschen. Zum Beispiel bedroht ein Pilz, der rostrote Pusteln auf den Blättern verursacht und als Sojabohnen-Rost bezeichnet wird, den Ernteertrag.

Für die RWTH-Wissenschaftler Univ.-Prof. Dr. Uwe Conrath und Priv.-Doz. Dr. Ulrich Schaffrath ist dies eine große Herausforderung: Die Pflanzenschutzexperten vom Institut für Biologie III der Aachener Hochschule untersuchen, welche genetischen, molekularbiologischen und biochemischen Ursachen dafür verantwortlich sind.

„Ein Großteil der Pflanzen sind in der freien Natur gegen die meisten Schaderreger resistent“, erläutert Conrath. So ist beispielsweise das heimische Wildkraut Ackerschmalwand (Arabidopsis thaliana) gegen den Rostbefall immun. Doch wie kommt es zu dieser Nicht-Wirt-Resistenz? Die Aachener Wissenschaftler und ihr Team gehen dieser Frage nach. Für sie ist diese Pflanze ein ideales Forschungsobjekt: „Von Arabidopsis thaliana ist der gesamte genetische Schaltplan mit fast 30.000 Genen bekannt.

Daher dient sie uns als Modellpflanze“, erklärt Conrath. Gemeinsam mit ihrem Team konnten die Wissenschaftler unlängst nachweisen, dass eine Mutante von Arabidopsis thaliana wesentlich anfälliger für den Rostbefall ist. „Bei dieser pen3-Mutante ist interessanterweise die Nicht-Wirt-Resistenz reduziert, der Pilz geht durch die äußere Zellschicht hindurch und wird erst später abgewehrt.“ Diese Erkenntnis fand und findet weltweites Interesse.

So rangiert die dazu erschienene Publikation „Characterization of Nonhost Resistance of Arabidopsis to the Asian Soybean Rust“ in der Online-Ausgabe des führenden amerikanischen Fachmagazins „Molecular Plant-Microbe Interactions“ (MPMI) bereits seit Wochen auf Platz zwei.

Für Conrath und sein wissenschaftliches Team sind die gewonnenen Erkenntnisse allerdings nur eine Zwischenetappe für weitere Experimente. „In den nächsten Wochen und Monaten werden wir Samen der pen3-Mutante genetisch weiter verändern. Die nachwachsenden Pflanzen, die dann einen veränderten Gencode aufweisen, werden wir mit Sojabohnen-Rost infizieren – in der Hoffnung, so das Gen zu finden, das die Rost-Resistenz bedingt.“ In zwei oder drei Jahren, so schätzt der RWTH-Biologe, werden die so genannten „Kandidaten-Gene“ diagnostiziert sein. Dies wäre ein Durchbruch auf dem Weg, Sojabohnenpflanzen durch gezielte Eingriffe dauerhaft gegen den Rostbefall immun zu machen. Die Forschungsarbeiten wurden und werden sowohl mit Mitteln aus der Exzellenzinitiative, als auch von der Industrie gefördert.

Die Welternte an Sojabohnen betrug laut Food and Agriculture Organization of the United Nations (FAO) im vergangenen Jahr 216.144.262 Tonnen. Die wichtigsten Exportländer sind die Vereinigten Staaten, Brasilien und Argentinien während Japan, die Niederlande und Deutschland beim Import vorn lagen.

Weitere Informationen bei Univ.-Prof. Dr. rer.nat. Uwe Conrath, Lehr- und Forschungsgebiet Biochemie und Molekularbiologie der Pflanzen, Institut für Pflanzenphysiologie, Telefon: 0241/8026540, E-Mail: uwe.conrath@bio3.rwth-aachen.de

von Ilse Trautwein

Media Contact

Thomas von Salzen idw

Weitere Informationen:

http://www.rwth-aachen.de

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Bakterien für klimaneutrale Chemikalien der Zukunft

For­schen­de an der ETH Zü­rich ha­ben Bak­te­ri­en im La­bor so her­an­ge­züch­tet, dass sie Me­tha­nol ef­fi­zi­ent ver­wer­ten kön­nen. Jetzt lässt sich der Stoff­wech­sel die­ser Bak­te­ri­en an­zap­fen, um wert­vol­le Pro­duk­te her­zu­stel­len, die…

Batterien: Heute die Materialien von morgen modellieren

Welche Faktoren bestimmen, wie schnell sich eine Batterie laden lässt? Dieser und weiteren Fragen gehen Forschende am Karlsruher Institut für Technologie (KIT) mit computergestützten Simulationen nach. Mikrostrukturmodelle tragen dazu bei,…

Porosität von Sedimentgestein mit Neutronen untersucht

Forschung am FRM II zu geologischen Lagerstätten. Dauerhafte unterirdische Lagerung von CO2 Poren so klein wie Bakterien Porenmessung mit Neutronen auf den Nanometer genau Ob Sedimentgesteine fossile Kohlenwasserstoffe speichern können…

Partner & Förderer