Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ruhr-Infektion: Wächter-Proteine wecken Hoffnung auf neue Therapieansätze

15.05.2017

Uni Hohenheim schafft neue Erkenntnisse über Darmzellen: Protein erkennt von Bakterien verursachte Veränderungen der Zellstruktur. Ein Werkstattbericht

Unbekannte Eindringlinge an ihren Einbruchsspuren erkennen: Das können auch bestimmte Wächter-Proteine in Darmzellen, wie Forscher der Universität Hohenheim herausfanden. Dringt ein Erreger der Durchfallerkrankung Ruhr in die Darmzelle ein, bemerken sogenannte NOD1-Proteine den dadurch entstandenen Schaden an der Zellstruktur und schlagen Alarm.


Per Live Cell Imaging können die Forscher die Vorgänge in der Zelle beobachten.

Bildquelle: Universität Hohenheim / Dorothee Barsch

Das Forscherteam verfolgt nun den genauen Ablauf dieses Prozesses. Die Erkenntnisse könnten helfen lebensbedrohliche Infektionserkrankungen wie die Ruhr auch dann zu bekämpfen, wenn sich die Erreger durch Mutationen vor dem Immunsystem tarnen. Die Deutsche Forschungsgemeinschaft fördert das Projekt mit 430.000 Euro. Damit zählt es zu den Schwergewichten der Forschung an der Universität Hohenheim.

Bemerkt ein Nachtwächter ein zerbrochenes Fenster oder eine aufgehebelte Haustür, ruft er sofort die Polizei – auch wenn er den Einbrecher selbst gar nicht gesehen hat. Die Spuren des Einbruchs reichen aus, um Alarmbereitschaft auszulösen.

Forscher um den Immunologen Prof. Dr. Thomas Kufer an der Universität Hohenheim fanden nun heraus: Darmzellen reagieren auf Eindringlinge nach dem gleichen Prinzip. Denn in der menschlichen Darmzelle gibt es Wächter-Proteine, die „Einbruchspuren“ von Krankheitserregern erkennen und Alarm schlagen.

Wissenschaftlich gesehen handelt es sich bei den Wächtern um Rezeptoren in der Zelle, die sogenannten NOD1-Proteine. Bereits bekannt war, dass sie eindringende Bakterien an ihrer Oberflächenstruktur erkennen können. Forscher der Universität Hohenheim entdeckten nun eine zweite Fähigkeit der Wächter-Proteine: Sie bemerken die Veränderungen, die zum Beispiel Ruhr-Erreger in der Zelle auslösen.

Verräterisches Ungleichgewicht im Zellgewebe

Der Grund: wenn Ruhr-Erreger in Darmzellen eindringen, produzieren sie eigene Proteine, um sich in der Zelle einzurichten. Dadurch verändern sie das sogenannte Zytoskelett der Zelle: ein Geflecht aus fadenähnlichen Proteinen, den Aktinfilamenten, das der Zelle ihre Form gibt.

„Dadurch entsteht ein Ungleichgewicht im Zellgewebe und diese Veränderungen der Aktinfilamente können die NOD1-Proteine bemerken“, erklärt Immunologie Prof. Dr. Kufer. „Unsere Körperzellen haben also mehrere Möglichkeiten, Eindringlinge zu erkennen.“

Veränderungen der Zellstruktur als Beweismittel

Damit unterscheiden sich das NOD1-Protein von anderen Proteinen, die ebenfalls in der Lage sind, Bakterien zu erkennen und eine Abwehrreaktion auszulösen. Diese bekannte Gruppe wird auch als „Mustererkennungsrezeptoren“ bezeichnet, denn sie identifizieren eindringende Erreger normalerweise allein anhand ihrer körperfremden Oberflächenstrukturen.

Durch Veränderung ihrer Oberflächenstrukturen können die Bakterien jedoch der Erkennung durch Mustererkennungsrezeptoren entgehen, so Prof. Dr. Kufer.

Die NOD1-Proteine könnten dann für eine zweite Absicherung sorgen. „Auch wenn sich die Bakterien mit einer neuen Oberfläche tarnen - ihre Spuren an der Aktinstruktur bleiben gleich; die NOD1-Proteine können sie aufspüren und eine Abwehrreaktion auslösen.“

Grundlagenforschung, die Leben retten soll

Mit High-Tech-Methoden erforscht Prof. Dr. Kufer mit seinen Mitarbeiterinnen Dr. Kornelia Ellwanger und Christine Arnold nun, wie genau dieser Erkennungsmechanismus abläuft und auf welchem Weg das NOD1-Protein daraufhin eine Immunreaktion auslöst.

„Das ist Grundlagenforschung“, betont Prof. Dr. Kufer, „doch unsere Ergebnisse könnten in den Kampf gegen eine Krankheit einfließen, die jedes Jahr vor allem in Entwicklungsländern Millionen von Todesopfern fordert.“

Zudem könnten Wissenschaftler mit den Ergebnissen an Methoden arbeiten, um Proteine gezielt zu aktivieren oder zu unterdrücken.

Wächter-Proteine vor der Kamera

Aktuell erforschen Prof. Dr. Kufer und sein Team Details zur Arbeit der Wächterproteine mit der Kamera. Dazu verwenden sie das sogenannte Live Cell Imaging, bei dem lebende Zellen unter dem Mikroskop gefilmt werden.

Dazu haben sie menschliche Zellen so manipuliert, dass Aktinfilamente und NOD1-Proteine mit grün oder rot fluoreszierenden Markerproteinen verbunden werden, um erkennbar zu sein.

Dank der mikroskopischen Filmaufnahmen können die Wissenschaftler nun im Zeitraffer zusehen, wie sich die NOD1-Proteine durch die Zelle bewegen – und wie sich diese Bewegungen ändern, sobald sie die Zellen mit Ruhr-Erregern infizieren.

Erste Erkenntnisse zeigen eine enge Verbindung zwischen NOD1 und dem Zellstruktur-Protein Aktin. „Auf den Kamera-Aufnahmen können wir bereits sehen: NOD1 ist vor allem an der Zellmembran angesiedelt. Das heißt, die Wächter platzieren sich direkt an der Stelle wo Bakterien eindringen.“

Wichtiger Teil der Signalkette

Im weiteren Verlauf des Projektes will das Team klären, wie genau NOD1 die bakterienbedingten Veränderungen an der Aktinstruktur erkennt, auf welchen Wegen es daraufhin das Alarmsignal für eine Immunreaktion gibt, und welche weiteren Zellbestandteile daran beteiligt sind.

Dazu zählt zum Beispiel das RIP2-Protein, das nach NOD1 das nächste Glied in der Signalkette ist, also die von NOD1 abgegebene Warnung über einen Eindringling weiterleitet.

Auch das dem NOD1-Protein sehr ähnliche NOD2-Protein nehmen die Wissenschaftler unter die Lupe. Beide sind sich zwar ähnlich, NOD1 ist jedoch deutlich besser in der Lage, Veränderungen der Aktinstruktur zu erkennen.

NOD2 spielt außerdem eine Rolle bei der genetischen Veranlagung für die Darmerkrankung Morbus Crohn. „Der Vergleich von NOD1 und NOD2 soll uns zeigen was passiert, wenn die Erkennung von Eindringlingen gestört ist und wie solche Störungen zu Erkrankungen führen können.“

Hintergrund: Forschung mit „unsterblichen“ menschlichen Zellen

Für ihre Experimente verwendet die Gruppe um Prof. Dr. Kufer menschliche Zellen aus dem sogenannen HeLa-Zellstamm. Benannt sind sie nach der Amerikanerin Henrietta Lacks, bei der ein Mediziner die Krebszellen 1951 aus einem Tumor entnahm. Schnell stellte sich heraus, dass die Zellen sich besonders schnell teilten und auch nach einer hohen Zahl Teilungen nicht abstarben.

Labore begannen die Zellen massenhaft zu kultivieren und für die Forschung zur Verfügung zu stellen. Die Zellen wurden seitdem für eine Vielzahl von Experimenten verwendet, unter anderem auch bei der Entwicklung des Impfstoffs gegen Kinderlähmung und in vier Forschungsprojekten, die später einen Nobelpreis erhielten. Schätzungen zufolge wurden insgesamt 50 Tonnen Zellmaterial aus ihnen hergestellt.

Hintergrund zum Projekt „Charakterisierung der Funktion von Aktin-Remodeling in NLR-vermittelten angeborenen Immunreaktionen“

Die DFG fördert das Projekt „Charakterisierung der Funktion von Aktin-Remodeling in NLR-vermittelten angeborenen Immunreaktionen“ mit 430.000 Euro aus dem Programm Sachbeihilfe. Es läuft noch bis Herbst 2018.

Kooperationspartner des Forschungsprojektes sind Prof. Dr. Herbert Schmidt vom Fachgebiet Lebensmittelmikrobiologie und -hygiene der Universität Hohenheim sowie Dr. Angelika Haußer vom Institut für Zellbiologie und Immunologie der Universität Stuttgart.

Hintergrund: Schwergewichte der Forschung

29,5 Millionen Euro an Drittmitteln akquirierten Wissenschaftler der Universität Hohenheim 2016 für Forschung und Lehre. In loser Folge präsentiert die Reihe „Schwergewichte der Forschung“ herausragende Forschungsprojekte mit einem finanziellen Volumen von mindestens 250.000 Euro für apparative Forschung bzw. 125.000 Euro für nicht-apparative Forschung.

Kontakt für Medien:
Prof. Dr. rer. nat. Thomas Kufer, Universität Hohenheim, Leiter des Fachgebiets Immunologie
T 0711 459 24850, E thomas.kufer@uni-hohenheim.de

Text: Barsch / Klebs

Florian Klebs | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.uni-hohenheim.de/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wie Reize auf dem Weg ins Bewusstsein versickern
22.09.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Lebendiges Gewebe aus dem Drucker
22.09.2017 | Universitätsklinikum Freiburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie