Ruhe im Genom

Der Beutelteufel, auch Tasmanischer Teufel genannt, (Sarcophilus harrisii) © Maria Nilsson-Janke

„Springende Gene“ wie die „LINE-1-Elemente“ haben die Fähigkeit sich selbst zu kopieren und an zufälliger Stelle im Erbgut wieder einzufügen. Wie Untersuchungen zeigen, machen diese Gene circa 15 bis 20 Prozent des Genoms höherer Säugetiere und Beuteltiere aus. Wenn sich „springende Gene“ an anderer Stelle wieder einbauen, verändern sie das Genom und treiben durch diese kleinen Anpassungen des Erbguts die Evolution voran.

Frankfurter Wissenschaftlerinnen und Wissenschaftler konnten jetzt nachweisen, dass die „springenden Gene“ im Erbgut des Tasmanischen Teufels zwar vorhanden sind, aber die Fähigkeit zum Kopieren und Einfügen verloren haben.

„Es gibt beim Tasmanischen Teufel seit längerem keine LINE-1-Elemente, die sich in ihrem Zustand im Genom von selbst kopieren können, unter anderem weil das dafür notwendige Gen für das Schlüsselenzym – die Reverse Transkriptase – defekt ist. Auch bei den Schwesterarten – Schwarzschwanz-Beutelmarder und Fettschwanz-Beutelmaus – haben wir keine intakten Genkopien des Enzyms gefunden“, erklärt Dr. Maria Nilsson, Senckenberg Biodiversität und Klima Forschungszentrum.

Im Rahmen der Studie hatte ein Team um Nachwuchsgruppenleiterin Nilsson mehrere hundert LINE-1-Elemente aus den Beuteltierarten sequenziert und hinsichtlich ihrer potentiellen Aktivität analysiert. Das Experiment bestätigt ihren Befund, der sich bereits vergangenes Jahr in einer Computeranalyse des kompletten Genoms des Tasmanischen Teufels angedeutet hatte. Durch das experimentelle Design konnten nun die letzten Zweifel am Ergebnis der computergestützten Analyse ausgeräumt werden.

Inaktive LINE-1-Elemente sind außer bei Beuteltieren im Rahmen anderer Studien nur noch in südamerikanischen Nagetieren, Flughunden und Erdhörnchen nachgewiesen worden. Allerdings tragen nicht alle Beuteltiere den hier beobachteten Gendefekt. Das nordamerikanische Oppossum, ein entfernter Verwandter von Tasmanischem Teufel, Beutelmarder & Co., besitzt viele aktive LINE-1-Elemente und nachweislich auch das intakte Gen.

„Das könnte bedeuten, dass die Stilllegung ein genereller Trend bei australischen Beuteltieren ist. Bei deren gemeinsamen Vorfahren waren noch aktive LINE-1-Elemente vorhanden, die dann nach der Aufspaltung der Arten im Verlauf ihrer Evolution jeweils auch eigenständig inaktiv wurden“, erläutert Dr. Susanne Gallus, Senckenberg Biodiversität und Klima Forschungszentrum.

Aktiv „springende Gene“ können möglicherweise durch ihre willkürliche Platzierung im Erbgut Gendefekte im Organismus verursachen. Dennoch macht eine Stilllegung nur auf den ersten Blick Sinn: Das chaotische Kopieren und Einfügen erhöht nämlich die genetische Vielfalt eines Organismus. Indem sich diese Elemente in oder in die Nähe von codierenden Bereichen von Genen einbauen, können sie Genfunktionen oder die Genexpression verändern. Beides ist Voraussetzung, um sich an neue Umweltbedingungen – beispielsweise steigende Temperaturen – anzupassen.

Die Inaktivität der LINE-1-Elemente könnte daher in evolutionären Zeiträumen die Anpassungsfähigkeit bei Tasmanischem Teufel, Beutelmarder und Beutelmaus stark beeinflussen. Welche evolutiven Auswirkungen das Fehlen der genetischen Sprungfeder tatsächlich hat, ist nun die nächste Frage, der Dr. Nilsson und ihr Team nachgehen werden.

Kontakt
Dr. Maria Nilsson-Janke
Senckenberg Biodiversität und Klima Forschungszentrum
Tel. 069- 7542 1829
Maria.nilsson-janke@senckenberg.de

Dr. Susanne Gallus
Senckenberg Biodiversität und Klima Forschungszentrum
Tel. 069- 7542 1828
Susanne.gallus@senckenberg.de

Sabine Wendler
Pressestelle
Senckenberg Biodiversität und Klima Forschungszentrum
Tel. 069- 7542 1818
pressestelle@senckenberg.de

Publikation
Gallus, S., Lammers, F., Nilsson, M.A. (2016): When genomics is not enough: experimental evidence for a decrease of LINE-1 activity during the evolution of Australian marsuptials. Genome Biology and Evolution, doi: 10.1093/gbe/evw159
http://gbe.oxfordjournals.org/content/early/2016/07/05/gbe.evw159.short?rss=1

Die Pressebilder können kostenfrei für redaktionelle Bericht­erstattung verwendet werden unter der Voraussetzung, dass der genannte Urheber mit veröffentlicht wird. Eine Weiter­gabe an Dritte ist nur im Rahmen der aktuellen Berichterstattung zulässig.Pressemitteilung und Bildmaterial finden Sie auch unter http://www.senckenberg.de/presse

Die Natur mit ihrer unendlichen Vielfalt an Lebensformen zu erforschen und zu verstehen, um sie als Lebensgrundlage für zukünftige Generationen erhalten und nachhaltig nutzen zu können – dafür arbeitet die Senckenberg Gesellschaft für Naturforschung seit nunmehr fast 200 Jahren. Diese integrative „Geobiodiversitätsforschung“ sowie die Vermittlung von Forschung und Wissenschaft sind die Aufgaben Senckenbergs. Drei Naturmuseen in Frankfurt, Görlitz und Dresden zeigen die Vielfalt des Lebens und die Entwicklung der Erde über Jahrmillionen. Die Senckenberg Gesellschaft für Naturforschung ist ein Mitglied der Leibniz-Gemeinschaft. Das Senckenberg Naturmuseum in Frankfurt am Main wird von der Stadt Frankfurt am Main sowie vielen weiteren Partnern gefördert. Mehr Informationen unter http://www.senckenberg.de.

2016 ist Leibniz-Jahr. Anlässlich des 370. Geburtstags und des 300. Todestags des Universalgelehrten Gottfried Wilhelm Leibniz (*1.7.1646 in Leipzig, † 14.11.1716 in Hannover) veranstaltet die Leibniz-Gemeinschaft ein großes Themenjahr. Unter dem Titel „die beste der möglichen Welten“ – einem Leibniz-Zitat – rückt sie die Vielfalt und die Aktualität der Themen in den Blick, denen sich die Wissenschaftlerinnen und Wissenschaftler der bundesweit 88 Leibniz-Einrichtungen widmen. http://www.bestewelten.de

Media Contact

Sabine Wendler idw - Informationsdienst Wissenschaft

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Anlagenkonzepte für die Fertigung von Bipolarplatten, MEAs und Drucktanks

Grüner Wasserstoff zählt zu den Energieträgern der Zukunft. Um ihn in großen Mengen zu erzeugen, zu speichern und wieder in elektrische Energie zu wandeln, bedarf es effizienter und skalierbarer Fertigungsprozesse…

Ausfallsichere Dehnungssensoren ohne Stromverbrauch

Um die Sicherheit von Brücken, Kränen, Pipelines, Windrädern und vielem mehr zu überwachen, werden Dehnungssensoren benötigt. Eine grundlegend neue Technologie dafür haben Wissenschaftlerinnen und Wissenschaftler aus Bochum und Paderborn entwickelt….

Dauerlastfähige Wechselrichter

… ermöglichen deutliche Leistungssteigerung elektrischer Antriebe. Überhitzende Komponenten limitieren die Leistungsfähigkeit von Antriebssträngen bei Elektrofahrzeugen erheblich. Wechselrichtern fällt dabei eine große thermische Last zu, weshalb sie unter hohem Energieaufwand aktiv…

Partner & Förderer