Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

RUB-Forscher klären Katalyse-Mechanismus des Zellwachstumsproteins Ras auf

10.09.2012
Wie eine Feder im Spielzeugauto
PNAS: Proteine bringen Spannung in Phosphatkette

Proteine beschleunigen bestimmte chemische Reaktionen in Zellen um ein Vielfaches. Den molekularen Mechanismus, mit dem das Protein Ras beschleunigt wird und somit das Zellwachstum bremst, beschreiben Biophysiker der Ruhr-Universität Bochum um Prof. Dr. Klaus Gerwert in der Online-Early Edition der Zeitschrift PNAS.


Die Proteine Ras (blau) und GAP (grün) interagieren mit Guanosintriphosphat (GTP, gelb) und Magnesium (rosa). Sie spannen die Kette aus drei Phosphatgruppen Schritt für Schritt so stark (rechts), dass sich die dritte Phosphatgruppe leicht von dem Rest der Kette löst.
Abbildung: Till Rudack

Mit einer Kombination aus Infrarotspektroskopie und Computersimulationen zeigten sie, dass Ras eine Phosphatkette derart unter Spannung setzt, dass sich eine Phosphatgruppe besonders leicht ablösen lässt – die Bremse für das Zellwachstum. Mutiertes Ras ist an der Tumorbildung beteiligt, weil sich diese Reaktion verlangsamt und die Bremse für das Zellwachstum versagt.

„Unsere Ergebnisse könnten helfen, kleine Moleküle zu entwickeln, die Ras-Proteine auf die richtige Geschwindigkeit zurücksetzen“, sagt Prof. Gerwert. „Solche Moleküle wären dann für die molekulare Krebstherapie interessant.“

An/Aus: Der Ras-Code

Das Protein Ras schaltet das Zellwachstum ab, indem es eine Phosphatgruppe von dem kleinen gebundenen Guanosintriphosphat, kurz GTP, ablöst. GTP besitzt drei miteinander verkettete Phosphatgruppen. Liegt es in Wasser vor, kann sich die dritte Phosphatgruppe spontan abspalten – auch ohne Hilfe des Proteins Ras. Dieser Prozess ist allerdings sehr langsam. Ras beschleunigt die Abspaltung um fünf Größenordnungen, ein zweites Protein, GAP genannt, um weitere fünf Größenordnungen. Wie es zu dieser Beschleunigung kommt, hat das Bochumer Team nun herausgefunden.

Wie Ras die Phosphatkette spannt

Ras bringt die Kette der drei Phosphatgruppen am GTP in eine bestimmte Form. Es dreht die dritte und zweite Phosphatgruppe so zueinander, dass sich die Kette spannt. „Ähnlich wie man eine Feder in einem Spielzeugauto durch Drehen einer Schraube aufzieht“, erklärt Prof. Gerwert. „Ras ist die Schraube, die Phosphatgruppen bilden die Feder.“ Das Protein GAP spannt die Feder noch weiter, indem es auch die erste Phosphatgruppe gegen die zweite dreht. Damit gelangt das GTP in einen so energiereichen Zustand, dass sich die dritte Phosphatgruppe leicht von der Kette lösen kann – so wie das Spielzeugauto nach Aufziehen der Feder spontan losfährt.

Infrarotspektroskopie: hohe Auflösung, aber nur indirekt zu interpretieren

Die Ergebnisse erzielten die Bochumer Forscher mit der am Lehrstuhl Biophysik entwickelten zeitaufgelösten Fourier-Transform-Infrarot (FTIR)-Spektroskopie. Mit dieser Technik verfolgen die Wissenschaftler Reaktionen und Interaktionen von Proteinen mit hoher räumlicher und zeitlicher Auflösung; sehr viel präziser als mit einem Mikroskop. „Allerdings liefert die Spektroskopie nicht so schöne Bilder wie ein Mikroskop, sondern nur sehr komplexe Infrarotspektren“, erklärt PD Dr. Carsten Kötting. „Wie eine Geheimschrift muss man sie dekodieren.“

Quantenchemische Simulationen

Dazu simulierte Till Rudack die Proteinreaktionen auf modernsten Computerclustern und berechnete die dazugehörigen Infrarotspektren. Aufgrund des enormen Rechenaufwands lassen sich große Moleküle wie ein komplettes Protein mit dieser sogenannten quantenchemischen Simulation zurzeit nicht zuverlässig beschreiben. Daher beschränkten die Wissenschaftler ihre Analyse auf GTP und den Teil des Ras- bzw. GAP-Proteins, der unmittelbar mit GTP interagiert. Den Rest der Proteine beschrieben sie mit einer weniger aufwendigen Molekulardynamik-Simulation. „Beim Zusammenbringen der verschiedenen Simulationen kann man leicht auf Irrwege geraten“, sagt Till Rudack. „Deswegen muss man die Qualität der Ergebnisse prüfen, indem man die simulierten mit den gemessenen Infrarotspektren vergleicht.“ Stimmen die mit beiden Techniken erhaltenen Spektren überein, kann die Struktur der Proteine bis auf einen millionstel Mikrometer genau bestimmt werden. Das war bei der Bochumer Studie der Fall.

Möglicher Nutzen für die Krebstherapie

Die molekulare Krebstherapie wird bereits erfolgreich bei Erkrankungen wie der chronisch myeloischen Leukämie (CLM) in Form des Medikaments Gleevec angewandt. Ähnlich wirksame Moleküle sind gegen das mutierte Ras-Protein bisher nicht gefunden worden. „Da wir die Reaktionen des Ras-Proteins nun mit deutlich besserer Auflösung untersuchen können, keimt neue Hoffnung auf, das mutierte Molekül mit Wirkstoffen wie Gleevec entschärfen zu können und den richtigen Rhythmus der Zelle wiederherzustellen“, so Gerwert.
Titelaufnahme

T. Rudack, F. Xia, J. Schlitter, C. Kötting, K. Gerwert (2012): Ras and GTPase-activating protein (GAP) drive GTP into a precatalytic state as revealed by combining FTIR and biomolecular simulations, PNAS, doi: 10.1073/pnas.1204333109

Weitere Informationen

Prof. Dr. Klaus Gerwert, Lehrstuhl Biophysik, Fakultät für Biologie und Biotechnologie der Ruhr-Universität, 44780 Bochum, Tel. 0234/32-24461
klaus.gerwert@bph.ruhr-uni-bochum.de

Till Rudack, Lehrstuhl Biophysik, Fakultät für Biologie und Biotechnologie der Ruhr-Universität, 44780 Bochum, Tel. 0234/32-28363
till.rudack@bph.ruhr-uni-bochum.de

Angeklickt

Lehrstuhl Biophysik
http://www.bph.ruhr-uni-bochum.de/

Frei verfügbarer Originalartikel
http://www.pnas.org/content/early/2012/08/27/1204333109.abstract

Redaktion: Dr. Julia Weiler

Dr. Josef König | idw
Weitere Informationen:
http://www.bph.ruhr-uni-bochum.de/
http://www.pnas.org/content/early/2012/08/27/1204333109.abstract

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht In Hochleistungs-Mais sind mehr Gene aktiv
19.01.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Warum es für Pflanzen gut sein kann auf Sex zu verzichten
19.01.2018 | Universität Wien

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Maschinelles Lernen im Quantenlabor

Auf dem Weg zum intelligenten Labor präsentieren Physiker der Universitäten Innsbruck und Wien ein lernfähiges Programm, das eigenständig Quantenexperimente entwirft. In ersten Versuchen hat das System selbständig experimentelle Techniken (wieder)entdeckt, die heute in modernen quantenoptischen Labors Standard sind. Dies zeigt, dass Maschinen in Zukunft auch eine kreativ unterstützende Rolle in der Forschung einnehmen könnten.

In unseren Taschen stecken Smartphones, auf den Straßen fahren intelligente Autos, Experimente im Forschungslabor aber werden immer noch ausschließlich von...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Fliegen wird smarter – Kommunikationssystem LYRA im Lufthansa FlyingLab

• Prototypen-Test im Lufthansa FlyingLab
• LYRA Connect ist eine von drei ausgewählten Innovationen
• Bessere Kommunikation zwischen Kabinencrew und Passagieren

Die Zukunft des Fliegens beginnt jetzt: Mehrere Monate haben die Finalisten des Mode- und Technologiewettbewerbs „Telekom Fashion Fusion & Lufthansa FlyingLab“...

Im Focus: Ein Atom dünn: Physiker messen erstmals mechanische Eigenschaften zweidimensionaler Materialien

Die dünnsten heute herstellbaren Materialien haben eine Dicke von einem Atom. Sie zeigen völlig neue Eigenschaften und sind zweidimensional – bisher bekannte Materialien sind dreidimensional aufgebaut. Um sie herstellen und handhaben zu können, liegen sie bislang als Film auf dreidimensionalen Materialien auf. Erstmals ist es Physikern der Universität des Saarlandes um Uwe Hartmann jetzt mit Forschern vom Leibniz-Institut für Neue Materialien gelungen, die mechanischen Eigenschaften von freitragenden Membranen atomar dünner Materialien zu charakterisieren. Die Messungen erfolgten mit dem Rastertunnelmikroskop an Graphen. Ihre Ergebnisse veröffentlichen die Forscher im Fachmagazin Nanoscale.

Zweidimensionale Materialien sind erst seit wenigen Jahren bekannt. Die Wissenschaftler André Geim und Konstantin Novoselov erhielten im Jahr 2010 den...

Im Focus: Forscher entschlüsseln zentrales Reaktionsprinzip von Metalloenzymen

Sogenannte vorverspannte Zustände beschleunigen auch photochemische Reaktionen

Was ermöglicht den schnellen Transfer von Elektronen, beispielsweise in der Photosynthese? Ein interdisziplinäres Forscherteam hat die Funktionsweise wichtiger...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Kongress Meditation und Wissenschaft

19.01.2018 | Veranstaltungen

LED Produktentwicklung – Leuchten mit aktuellem Wissen

18.01.2018 | Veranstaltungen

6. Technologie- und Anwendungsdialog am 18. Januar 2018 an der TH Wildau: „Intelligente Logistik“

18.01.2018 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rittal vereinbart mit dem Betriebsrat von RWG Sozialplan - Zukunftsorientierter Dialog führt zur Einigkeit

19.01.2018 | Unternehmensmeldung

Open Science auf offener See

19.01.2018 | Geowissenschaften

Original bleibt Original - Neues Produktschutzverfahren für KFZ-Kennzeichenschilder

19.01.2018 | Informationstechnologie