Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

RUB-Forscher enttarnen Janus-Natur mechanischer Kräfte mit Jülicher Spitzenrechner

17.06.2013
Viel bringt nicht immer viel
Nature Chemistry: Reaktionsgeschwindigkeit steigt nicht proportional zur Kraft

Je fester man zieht, desto schneller geht‘s. Das war eine bislang gültige Regel in der Mechanochemie, mit der Forscher chemische Reaktionen durch mechanische Kräfte in Gang setzen. Dass mehr Kraft sich aber nicht eins zu eins in eine umso schnellere Reaktion übersetzen lässt, berichten Chemiker um Prof. Dominik Marx vom Lehrstuhl für Theoretische Chemie der Ruhr-Universität Bochum in der Zeitschrift „Nature Chemistry“.


Die Janus-Natur der Mechanochemie: Normalerweise beschleunigen mechanische Kräfte chemische Reaktionen. Für Disulfidbrücken, die in großer Zahl in Proteinen vorkommen, sorgen kraftinduzierte Strukturänderungen allerdings ab einem bestimmten Schwellenwert für eine relative Entschleunigung. Die Kraft zeigt also ihr Janusgesicht. Grafik: P. Dopieralski, D. Marx

Mit komplexen molekulardynamischen Simulationen am Jülicher Supercomputer „JUQUEEN“ enttarnten sie die Janus-Natur der Mechanochemie. Bis zu einer bestimmten Kraft steigt die Reaktionsgeschwindigkeit proportional zur Kraft an. Ist diese Schwelle überschritten, beschleunigen größere mechanische Kräfte die Reaktion wesentlich weniger.

Alte Sicht: Mechanische Kraft verringert Energiebarriere stetig

Um chemische Reaktionen in Gang zu bringen, muss zunächst eine Energiebarriere überwunden werden. Diese Energie können Forscher zum Beispiel in Form von mechanischen Kräften zuführen, die die beteiligten Moleküle „verbiegen“. Um gezielt mit einzelnen Molekülen zu experimentieren, binden sie zunächst zwei lange Polymerketten an das Molekül. An diesen ziehen sie entweder in einem Kraftmikroskop oder bestrahlen die Lösung mit Ultraschall.
Bislang nahm man an, dass sich die Energiebarriere stetig verringert, je mehr mechanische Energie man in das Molekül steckt. Diese Hypothese widerlegten die RUB-Chemiker nun. Schlüssel zum Erfolg war eine besonders aufwendige Form der Computersimulation, die sogenannte ab initio Molekulardynamik-Methode, die sie nur auf dem derzeit schnellsten Rechner Europas am Jülich Supercomputing Centre im Rahmen eines „Gauss Large Scale“-Projekts stemmen konnten.

Neue Sicht: Mehr Kraft bringt deutlich weniger Effekt

Das RUB-Team betrachtete ein kleines Molekül mit einer Disulfidbrücke, also zwei aneinander gebundenen Schwefelatomen, als Modell im „virtuellen Labor“ auf dem Computer. „Dieses Molekül repräsentiert – extrem vereinfacht – das entsprechende chemisch reaktive Zentrum in Proteinen“, sagt Dominik Marx. Im Verlauf der Reaktion wird die Schwefelbrücke gespalten. Das geht umso schneller, je stärker die Chemiker an dem Molekül ziehen, also je mehr sie das Molekülgerüst verbiegen – aber nur bis zu einer mechanischen Kraft von circa 0,5 Nanonewton. Kräfte über etwa 0,5 Nanonewton beschleunigen die Reaktion deutlich weniger als Kräfte unterhalb dieses Schwellenwerts.

Gestresste Moleküle: Zu viel mechanische Kraft erzeugt ungünstige räumliche Struktur

Das Bochumer Team erklärte den Effekt anhand der relativen Position der einzelnen Molekülbausteine zueinander. Während der Reaktion greift ein negativ geladenes Hydroxidion (OH-) aus dem umgebenden Wasser die Schwefelbrücke des virtuellen Proteins an. Bei Kräften über circa 0,5 Nanonewton ist das Protein jedoch bereits so stark „verbogen“, dass das Hydroxidion die Schwefelbrücke nicht mehr problemlos erreichen kann. Das Anlegen der Kraft blockiert also den Zugang, was die Energiebarriere für die Reaktion erhöht. Diese kann nur durch eine umso größere mechanische Kraft wieder erniedrigt werden. Im nächsten Schritt untersuchten die Forscher den Blockademechanismus an komplexeren Modellen, unter anderem einem großen Proteinfragment, ähnlich wie im Experiment. „Der Janus-Mechanismus erklärt bislang unverstandene und kontrovers diskutierte Ergebnisse aus kraftspektroskopischen Messungen am Protein Titin, das in Muskeln vorkommt“, sagt Professor Marx.
Rolle des Lösungsmittels entscheidend für erfolgreiche Simulation

„Weltweit haben sich schon mehrere Theoriegruppen bemüht, dieses experimentell beobachtete Phänomen zu erklären“, so Marx. „Entscheidend war es, die Rolle des Lösungsmittels, also des Wassers, korrekt mit einzubeziehen.“ Das Hydroxidion, das die Schwefelbrücke angreift, ist von einer Hülle aus Wassermolekülen umgeben, die sich im Lauf des Angriffs auf komplexe Weise verändert. Nur wenn diese sogenannten Umsolvatationseffekte während der Reaktion in der Simulation berücksichtigt werden, lassen sich die experimentell beobachteten Effekte virtuell nachstellen. Üblicherweise greifen Theoretiker jedoch auf Methoden zurück, die die Effekte des umgebenden Wassers drastisch vereinfachen (Mikrosolvatation und Kontinuumssolvatation), um die benötigte Rechenleistung zu reduzieren.

Förderung

Die Deutsche Forschungsgemeinschaft (DFG) förderte die Studie durch das bislang einzige in der Chemie angesiedelte „Reinhart Koselleck“-Projekt. Zudem unterstützt der Exzellenzcluster „Ruhr Explores Solvation“ (RESOLV, EXC 1069) diese Untersuchungen, seit ihn die DFG 2012 bewilligte. Das Projekt war nur möglich durch die Rechenzeit auf dem IBM Blue Gene/Q-Parallelrechner JUQUEEN am Jülich Supercomputing Centre. Das Gauss Centre for Supercomputing (GCS) stellte einen Großteil der insgesamt benötigten Rechenzeit im Rahmen eines „GCS Large Scale“-Projekts zur Verfügung.

Titelaufnahme

P. Dopieralski, J. Ribas-Arino, P. Anjukandi, M. Krupicka, J. Kiss, D. Marx (2013): The Janus-faced role of external forces in mechanochemical disulfide bond cleavage, Nature Chemistry, DOI: 10.1038/nchem.1676

Weitere Informationen

Prof. Dr. Dominik Marx, Lehrstuhl für Theoretische Chemie, Fakultät für Chemie und Biochemie der Ruhr-Universität, 44780 Bochum, Tel. 0234/32-28083, E-Mail: dominik.marx@rub.de

Redaktion: Dr. Julia Weiler

Dr. Josef König | idw
Weitere Informationen:
http://www.ruhr-uni-bochum.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Spot auf die Maschinerie des Lebens
23.08.2017 | Max-Planck-Institut für die Physik des Lichts, Erlangen

nachricht Immunsystem kann durch gezielte Manipulation des Zellstoffwechsels reguliert werden
23.08.2017 | Medical University of Vienna

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Platz 2 für Helikopter-Designstudie aus Stade - Carbontechnologie-Studenten der PFH erfolgreich

Bereits lange vor dem Studienabschluss haben vier Studenten des PFH Hansecampus Stade ihr ingenieurwissenschaftliches Können eindrucksvoll unter Beweis gestellt: Malte Blask, Hagen Hagens, Nick Neubert und Rouven Weg haben bei einem internationalen Wettbewerb der American Helicopter Society (AHS International) den zweiten Platz belegt. Ihre Aufgabe war es, eine Designstudie für ein helikopterähnliches Fluggerät zu entwickeln, das 24 Stunden an einem Punkt in der Luft fliegen kann.

Die vier Kommilitonen sind im Studiengang Verbundwerkstoffe/Composites am Hansecampus Stade der PFH Private Hochschule Göttingen eingeschrieben. Seit elf...

Im Focus: Wissenschaftler entdecken seltene Ordnung von Elektronen in einem supraleitenden Kristall

In einem Artikel der aktuellen Ausgabe des Forschungsmagazins „Nature“ berichten Wissenschaftler vom Max-Planck-Institut für Chemische Physik fester Stoffe in Dresden von der Entdeckung eines seltenen Materiezustandes, bei dem sich die Elektronen in einem Kristall gemeinsam in einer Richtung bewegen. Diese Entdeckung berührt eine der offenen Fragestellungen im Bereich der Festkörperphysik: Was passiert, wenn sich Elektronen gemeinsam im Kollektiv verhalten, in sogenannten „stark korrelierten Elektronensystemen“, und wie „einigen sich“ die Elektronen auf ein gemeinsames Verhalten?

In den meisten Metallen beeinflussen sich Elektronen gegenseitig nur wenig und leiten Wärme und elektrischen Strom weitgehend unabhängig voneinander durch das...

Im Focus: Wie ein Bakterium von Methanol leben kann

Bei einem Bakterium, das Methanol als Nährstoff nutzen kann, identifizierten ETH-Forscher alle dafür benötigten Gene. Die Erkenntnis hilft, diesen Rohstoff für die Biotechnologie besser nutzbar zu machen.

Viele Chemiker erforschen derzeit, wie man aus den kleinen Kohlenstoffverbindungen Methan und Methanol grössere Moleküle herstellt. Denn Methan kommt auf der...

Im Focus: Topologische Quantenzustände einfach aufspüren

Durch gezieltes Aufheizen von Quantenmaterie können exotische Materiezustände aufgespürt werden. Zu diesem überraschenden Ergebnis kommen Theoretische Physiker um Nathan Goldman (Brüssel) und Peter Zoller (Innsbruck) in einer aktuellen Arbeit im Fachmagazin Science Advances. Sie liefern damit ein universell einsetzbares Werkzeug für die Suche nach topologischen Quantenzuständen.

In der Physik existieren gewisse Größen nur als ganzzahlige Vielfache elementarer und unteilbarer Bestandteile. Wie das antike Konzept des Atoms bezeugt, ist...

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Die Zukunft des Leichtbaus: Mehr als nur Material einsparen

23.08.2017 | Veranstaltungen

Logistikmanagement-Konferenz 2017

23.08.2017 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Oktober 2017

23.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Spot auf die Maschinerie des Lebens

23.08.2017 | Biowissenschaften Chemie

Die Sonne: Motor des Erdklimas

23.08.2017 | Physik Astronomie

Entfesselte Magnetkraft

23.08.2017 | Physik Astronomie