Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

RUB-Forscher entschlüsseln neue Funktion proteingebundener Wassermoleküle

30.06.2011
Forscher der Ruhr-Universität Bochum um Prof. Dr. Klaus Gerwert vom Lehrstuhl für Biophysik konnten den schwierigen Nachweis erbringen, dass ein Protein einzelne Wassermoleküle für wenige Sekundenbruchteile zu einer Kette anordnet, um Protonen gezielt leiten zu können.

Mit Hilfe der Vibrationsspektroskopie und biomolekularer Simulationen haben die Bochumer Forscher somit erstmals vollständig den Mechanismus aufgeklärt, mit dem ein Membranprotein Protonen durch die Zellmembran pumpt. Sie zeigten, dass proteingebundene Wassermoleküle hierfür eine entscheidende Rolle spielen. Ihre Ergebnisse wurden für die early Edition von PNAS ausgewählt.


Drei proteingebundene Wassermoleküle (rot-weiß) leiten ein Proton von oben nach unten. LS Biophysik

Proteingebundene Wasser sind entscheidend

Bestimmte Proteine können Protonen von einer Seite der Zellmembran (Aufnahmeseite) auf die andere transportieren (Abgabeseite), was einen zentralen Prozess der Energieumwandlung in der Biologie darstellt. In früheren Veröffentlichungen in Nature und Angewandte Chemie konnten die Forscher des Lehrstuhls für Biophysik bereits zeigen, dass die proteingebundenen Wassermoleküle auf der Abgabeseite im Ruhezustand optimal angeordnet sind, um Protonen abzugeben. „Die Protonen werden wie bei umfallenden Dominosteinen vom Protein angestoßen und infolgedessen heraus befördert“, erklärt Gerwert. Unklar blieb jedoch, wie das Protein wieder in den Ausgangszustand zurückgesetzt wird, um einen neuen Pumpzyklus starten zu können. Um die abgegebenen Protonen zu ersetzen, müssen an der anderen Seite des Proteins neue Protonen aufgenommen werden. Die Bochumer Forscher fanden heraus, dass sich zu diesem Zweck an der Aufnahmeseite eine Kette von gerade mal drei Wassermolekülen für nur wenige Tausendstel einer Sekunde bildet, um die Protonen ins Proteininnere zu leiten.

Das Wasser gibt die Richtung vor

Das Protein schlägt dabei zwei Fliegen mit einer Klappe: In der Abgabephase sind die Wassermoleküle ungeordnet, was einen Protonentransport in die falsche Richtung verhindert. Nur in der Aufnahmephase sind sie korrekt ausgerichtet und können Protonen leiten. Diese Ergebnisse lösen das Rätsel, warum die Protonenleitung an der Aufnahmeseite nur in eine Richtung funktioniert und das Protein somit effektiv und gerichtet pumpen kann. „Die vorliegende Arbeit bildet mit den beiden vorherigen eine Trilogie, die den Protonenpumpzyklus vollständig mit atomarer Auflösung erklärt“, resümiert Gerwert.

Experimentelle Physik und theoretische Chemie kombiniert

Um die Prozesse auf Nanoebene mit hoher räumlicher und zeitlicher Auflösung verfolgen zu können, kombinierten die Forscher experimentelle Physik mit theoretischer Chemie. Steffen Wolf simulierte zunächst die strukturellen Änderungen im Protein mittels biomolekularer Computersimulationen (Molekulardynamik-Simulationen). Erik Freier wies die Effekte anschließend experimentell mit einer von Prof. Gerwert entwickelten Form der Vibrationsspektroskopie (zeitaufgelöste step-scan FTIR-Spektroskopie) nach. „Dieses interdisziplinäre Wechselspiel war der Schlüssel zum Erfolg“, so Gerwert. „Es hat sich gezeigt, dass die einzelnen Komponenten des Proteins so präzise aufeinander abgestimmt sind wie Zahnräder einer Maschine.“

Wie in Wasser so im Protein

Die drei Wassermoleküle werden vom Protein geschickt so angeordnet, dass sie Protonen nach dem aus der physikalischen Chemie bekannten Grotthus-Mechanismus leiten. Diesen Mechanismus beschrieb Nobelpreisträger Manfred Eigen in den fünfziger Jahren, um den sehr schnellen, ungerichteten Protonentransport in Wasser zu erklären. Aus den Bochumer Publikationen ergibt sich nun überraschenderweise, dass Aminosäuren gemeinsam mit proteingebundenen Wassermolekülen diesem sehr schnellen Transport eine Richtung geben können. Gerwerts Team konnte somit die Ergebnisse von Manfred Eigen erweitern und auf die Proteinforschung übertragen.

Lichtenergie effektiv in chemische Energie umwandeln

Die Bochumer Forscher arbeiteten vor allem mit dem Membranprotein Bakteriorhodopsin, mit dem bestimmte Bakterien eine urtümliche Form der Photosynthese ausführen. Bakteriorhodopsin baut ein Protonenkonzentrationsgefälle auf, indem es Protonen aus dem Zellinneren nach außen transportiert. Dieses Gefälle nutzen andere Proteine zur Produktion von ATP, dem universellen Kraftstoff der Zellen. Um die Lichtenergie effektiv zu nutzen, ist es wichtig, dass der Protonentransport eine spezifische Richtung besitzt und dass ein spontaner Rückfluss von Protonen verhindert wird.

Titelaufnahmen

Freier, E., Wolf, S., Gerwert, K. Proton transfer via a transient linear water-molecule chain in a membrane protein. PNAS, early edition, doi: 10.1073/pnas.1104735108 (2011)

Wolf, S., Freier, E., Potschies, M., Hofmann, E., Gerwert, K. Directional Proton Transfer in Membrane Proteins Achieved through Protonated Protein-Bound Water Molecules: A Proton Diode. Angew. Chem. Int. Ed., 49, 6889-6893 (2010)

Garczarek, F., Gerwert, K.: „Functional waters in intraprotein proton transfer monitored by FTIR difference spectroscopy“. Nature, 439, 109-112 (2006)

Weitere Informationen

Prof. Dr. Klaus Gerwert, Lehrstuhl für Biophysik der Ruhr-Universität Bochum, 44780 Bochum, Tel. 0234/32-24461

gerwert@bph.rub.de

Dr. Josef König | idw
Weitere Informationen:
http://www.ruhr-uni-bochum.de/
http://www.pnas.org/content/early/2011/06/20/1104735108.abstract

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Mikroben hinterlassen "Fingerabdrücke" auf Mars-Gestein
17.10.2017 | Universität Wien

nachricht Partnervermittlung mit Konsequenzen
17.10.2017 | Julius-Maximilians-Universität Würzburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Topologische Isolatoren: Neuer Phasenübergang entdeckt

Physiker des HZB haben an BESSY II Materialien untersucht, die zu den topologischen Isolatoren gehören. Dabei entdeckten sie einen neuen Phasenübergang zwischen zwei unterschiedlichen topologischen Phasen. Eine dieser Phasen ist ferroelektrisch: das bedeutet, dass sich im Material spontan eine elektrische Polarisation ausbildet, die sich durch ein äußeres elektrisches Feld umschalten lässt. Dieses Ergebnis könnte neue Anwendungen wie das Schalten zwischen unterschiedlichen Leitfähigkeiten ermöglichen.

Topologische Isolatoren zeichnen sich dadurch aus, dass sie an ihren Oberflächen Strom sehr gut leiten, während sie im Innern Isolatoren sind. Zu dieser neuen...

Im Focus: Smarte Sensoren für effiziente Prozesse

Materialfehler im Endprodukt können in vielen Industriebereichen zu frühzeitigem Versagen führen und den sicheren Gebrauch der Erzeugnisse massiv beeinträchtigen. Eine Schlüsselrolle im Rahmen der Qualitätssicherung kommt daher intelligenten, zerstörungsfreien Sensorsystemen zu, die es erlauben, Bauteile schnell und kostengünstig zu prüfen, ohne das Material selbst zu beschädigen oder die Oberfläche zu verändern. Experten des Fraunhofer IZFP in Saarbrücken präsentieren vom 7. bis 10. November 2017 auf der Blechexpo in Stuttgart zwei Exponate, die eine schnelle, zuverlässige und automatisierte Materialcharakterisierung und Fehlerbestimmung ermöglichen (Halle 5, Stand 5306).

Bei Verwendung zeitaufwändiger zerstörender Prüfverfahren zieht die Qualitätsprüfung durch die Beschädigung oder Zerstörung der Produkte enorme Kosten nach...

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Dezember 2017

17.10.2017 | Veranstaltungen

Intelligente Messmethoden für die Bauwerkssicherheit: Fachtagung „Messen im Bauwesen“ am 14.11.2017

17.10.2017 | Veranstaltungen

Meeresbiologe Mark E. Hay zu Gast bei den "Noblen Gesprächen" am Beutenberg Campus in Jena

16.10.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Mikroben hinterlassen "Fingerabdrücke" auf Mars-Gestein

17.10.2017 | Biowissenschaften Chemie

Vorhersagen bestätigt: Schwere Elemente bei Neutronensternverschmelzungen nachgewiesen

17.10.2017 | Physik Astronomie

Kaiserschnitt-Risiko ist vererbbar

17.10.2017 | Biowissenschaften Chemie