Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

RUB-Forscher entschlüsseln neue Funktion proteingebundener Wassermoleküle

30.06.2011
Forscher der Ruhr-Universität Bochum um Prof. Dr. Klaus Gerwert vom Lehrstuhl für Biophysik konnten den schwierigen Nachweis erbringen, dass ein Protein einzelne Wassermoleküle für wenige Sekundenbruchteile zu einer Kette anordnet, um Protonen gezielt leiten zu können.

Mit Hilfe der Vibrationsspektroskopie und biomolekularer Simulationen haben die Bochumer Forscher somit erstmals vollständig den Mechanismus aufgeklärt, mit dem ein Membranprotein Protonen durch die Zellmembran pumpt. Sie zeigten, dass proteingebundene Wassermoleküle hierfür eine entscheidende Rolle spielen. Ihre Ergebnisse wurden für die early Edition von PNAS ausgewählt.


Drei proteingebundene Wassermoleküle (rot-weiß) leiten ein Proton von oben nach unten. LS Biophysik

Proteingebundene Wasser sind entscheidend

Bestimmte Proteine können Protonen von einer Seite der Zellmembran (Aufnahmeseite) auf die andere transportieren (Abgabeseite), was einen zentralen Prozess der Energieumwandlung in der Biologie darstellt. In früheren Veröffentlichungen in Nature und Angewandte Chemie konnten die Forscher des Lehrstuhls für Biophysik bereits zeigen, dass die proteingebundenen Wassermoleküle auf der Abgabeseite im Ruhezustand optimal angeordnet sind, um Protonen abzugeben. „Die Protonen werden wie bei umfallenden Dominosteinen vom Protein angestoßen und infolgedessen heraus befördert“, erklärt Gerwert. Unklar blieb jedoch, wie das Protein wieder in den Ausgangszustand zurückgesetzt wird, um einen neuen Pumpzyklus starten zu können. Um die abgegebenen Protonen zu ersetzen, müssen an der anderen Seite des Proteins neue Protonen aufgenommen werden. Die Bochumer Forscher fanden heraus, dass sich zu diesem Zweck an der Aufnahmeseite eine Kette von gerade mal drei Wassermolekülen für nur wenige Tausendstel einer Sekunde bildet, um die Protonen ins Proteininnere zu leiten.

Das Wasser gibt die Richtung vor

Das Protein schlägt dabei zwei Fliegen mit einer Klappe: In der Abgabephase sind die Wassermoleküle ungeordnet, was einen Protonentransport in die falsche Richtung verhindert. Nur in der Aufnahmephase sind sie korrekt ausgerichtet und können Protonen leiten. Diese Ergebnisse lösen das Rätsel, warum die Protonenleitung an der Aufnahmeseite nur in eine Richtung funktioniert und das Protein somit effektiv und gerichtet pumpen kann. „Die vorliegende Arbeit bildet mit den beiden vorherigen eine Trilogie, die den Protonenpumpzyklus vollständig mit atomarer Auflösung erklärt“, resümiert Gerwert.

Experimentelle Physik und theoretische Chemie kombiniert

Um die Prozesse auf Nanoebene mit hoher räumlicher und zeitlicher Auflösung verfolgen zu können, kombinierten die Forscher experimentelle Physik mit theoretischer Chemie. Steffen Wolf simulierte zunächst die strukturellen Änderungen im Protein mittels biomolekularer Computersimulationen (Molekulardynamik-Simulationen). Erik Freier wies die Effekte anschließend experimentell mit einer von Prof. Gerwert entwickelten Form der Vibrationsspektroskopie (zeitaufgelöste step-scan FTIR-Spektroskopie) nach. „Dieses interdisziplinäre Wechselspiel war der Schlüssel zum Erfolg“, so Gerwert. „Es hat sich gezeigt, dass die einzelnen Komponenten des Proteins so präzise aufeinander abgestimmt sind wie Zahnräder einer Maschine.“

Wie in Wasser so im Protein

Die drei Wassermoleküle werden vom Protein geschickt so angeordnet, dass sie Protonen nach dem aus der physikalischen Chemie bekannten Grotthus-Mechanismus leiten. Diesen Mechanismus beschrieb Nobelpreisträger Manfred Eigen in den fünfziger Jahren, um den sehr schnellen, ungerichteten Protonentransport in Wasser zu erklären. Aus den Bochumer Publikationen ergibt sich nun überraschenderweise, dass Aminosäuren gemeinsam mit proteingebundenen Wassermolekülen diesem sehr schnellen Transport eine Richtung geben können. Gerwerts Team konnte somit die Ergebnisse von Manfred Eigen erweitern und auf die Proteinforschung übertragen.

Lichtenergie effektiv in chemische Energie umwandeln

Die Bochumer Forscher arbeiteten vor allem mit dem Membranprotein Bakteriorhodopsin, mit dem bestimmte Bakterien eine urtümliche Form der Photosynthese ausführen. Bakteriorhodopsin baut ein Protonenkonzentrationsgefälle auf, indem es Protonen aus dem Zellinneren nach außen transportiert. Dieses Gefälle nutzen andere Proteine zur Produktion von ATP, dem universellen Kraftstoff der Zellen. Um die Lichtenergie effektiv zu nutzen, ist es wichtig, dass der Protonentransport eine spezifische Richtung besitzt und dass ein spontaner Rückfluss von Protonen verhindert wird.

Titelaufnahmen

Freier, E., Wolf, S., Gerwert, K. Proton transfer via a transient linear water-molecule chain in a membrane protein. PNAS, early edition, doi: 10.1073/pnas.1104735108 (2011)

Wolf, S., Freier, E., Potschies, M., Hofmann, E., Gerwert, K. Directional Proton Transfer in Membrane Proteins Achieved through Protonated Protein-Bound Water Molecules: A Proton Diode. Angew. Chem. Int. Ed., 49, 6889-6893 (2010)

Garczarek, F., Gerwert, K.: „Functional waters in intraprotein proton transfer monitored by FTIR difference spectroscopy“. Nature, 439, 109-112 (2006)

Weitere Informationen

Prof. Dr. Klaus Gerwert, Lehrstuhl für Biophysik der Ruhr-Universität Bochum, 44780 Bochum, Tel. 0234/32-24461

gerwert@bph.rub.de

Dr. Josef König | idw
Weitere Informationen:
http://www.ruhr-uni-bochum.de/
http://www.pnas.org/content/early/2011/06/20/1104735108.abstract

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Zirkuläre RNA wird in Proteine übersetzt
24.03.2017 | Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft

nachricht Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen
24.03.2017 | Universität Bayreuth

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungsnachrichten

Förderung des Instituts für Lasertechnik und Messtechnik in Ulm mit rund 1,63 Millionen Euro

24.03.2017 | Förderungen Preise

TU-Bauingenieure koordinieren EU-Projekt zu Recycling-Beton von über sieben Millionen Euro

24.03.2017 | Förderungen Preise