RUB-Forscher entlarven die Grundlagen erblicher Herzrhythmusstörungen

Jeder kennt das Herzklopfen bei körperlichem oder seelischem Stress: Eine sinnvolle Reaktion des Körpers, die auf eine gesteigerte Leistung vorbereitet. Empfindliche Menschen allerdings können bei Stress Herzrhythmusstörungen bekommen, die zu Ohnmachtsanfällen und im schlimmsten Fall zum plötzlichen Herztod führen können.

Wie der Stress diese Störungen auslöst, haben internationale Forscher um PD Dr. Guiscard Seebohm (Lehrstuhl für Biochemie I – Rezeptorbiochemie der Ruhr-Universität) nun auf molekularer Ebene untersucht.

Ihre Erkenntnisse über das Zusammenspiel des Stress-Hormons Cortisol mit mutierten Ionenkanälen der Herzmuskelzellen könnten Wege zu neuen Medikamenten weisen.

Elektrische Signale ein- und ausschalten

Der regelmäßige Herzrhythmus wird durch ein komplexes Zusammenspiel elektrischer Signale reguliert. Diese Signale entstehen durch den Strom von Ionen durch verschiedene Typen von Ionenkanälen in den Wänden der Herzmuskelzellen, die sich alle zu bestimmten Zeitpunkten öffnen und wieder schließen müssen. Funktioniert einer der Ionenkanäle nicht richtig, so kann das Zusammenspiel gestört werden, und das Herz gerät aus dem Takt. Eine bestimmte Form dieser Herzrhythmusstörungen – die so genannte Torsade de pointes-Arrhythmie – entsteht unter anderem durch Defekte in einem bestimmten Kaliumkanal (IKs-Kanal). Dieser Kaliumkanal sorgt für das rechtzeitige Abschalten des elektrischen Signals am Ende jedes Herzschlags. Ist er defekt, etwa aufgrund einer Mutation, hält das Signal zu lange an. Patienten mit einem solchen erblichen Defekt im IKs-Kanal neigen zu Herzrhythmusstörungen, die zu Blutdruckabfall und plötzlichem Herztod führen können.

Das Stresshormon Cortisol stimuliert Ionenkanäle im Herzen

Es ist bereits länger bekannt, dass Stress bei diesen Patienten die Rhythmusstörung auslösen kann. Die molekulare Grundlage dieser Reaktion war aber bisher weitgehend unklar und eine gezielte medikamentöse Behandlung daher schwierig. Forscher um PD Dr. Guiscard Seebohm kamen dem Problem auf die Spur. Im Jahr 2007 konnten sie zeigen, dass der IKs-Kanal bei Gesunden durch das Stresshormon Cortisol stimuliert wird. Cortisol aktiviert in Herzzellen ein bestimmtes Enzym (SGK1). Dieses wiederum löst eine Signalkaskade aus, die mehr IKs-Kanäle aus Speichern in der Zelle in die Plasmamembran, also an die Zelloberfläche, transportiert, wo sie ihre Funktion entfalten können.

Mutierte Ionenkanäle reagieren anders auf Cortisol

Um das Problem bei mutierten Ionenkanälen zu ergründen, schleusten die Forscher für ihre aktuelle Arbeit gesunde und mutierte Ionenkanäle in Froscheier, Zellkulturen und Mäusestammzellen ein. Die Funktion der Ionenkanäle untersuchten sie dann elektrophysiologisch und mikroskopisch. Ihr Ergebnis: Manche mutierte IKs-Kanäle, die bei Patienten mit erblichen Herzrhythmusstörungen vorkommen, reagieren anders auf Cortisol als die Kanäle von Gesunden. Einige der mutierten IKs-Kanäle werden durch das Enzym SGK1 nicht wie gesunde Kanäle stimuliert, sondern gehemmt. Die Forscher fanden auch die molekulare Grundlage dieser komplexen Veränderungen heraus: Die mutierten Kanäle gelangen nicht wie die gesunden in die intrazellulären Speicher. Deshalb kann das Enzym SGK1 den Transport dieser mutierten IKs-Kanäle in die Plasmamembran nicht mehr stimulieren, und es werden weniger Kanäle in die Plasmamembran eingebaut, so dass ihre Aktivität insgesamt abnimmt.

Hoffnung auf spezifischere Medikamente

Durch diese Erkenntnisse über die molekularen Grundlagen erblicher Herzrhythmusstörungen ergeben sich neue, vielversprechende Ansatzpunkte für die Therapie dieser potenziell tödlichen Krankheit. Auch die Entwicklung neuer spezifischerer Medikamente rückt in greifbare Nähe. „Wir hoffen, dass unsere Ergebnisse dazu beitragen, in Zukunft Herzrhythmusstörungen besser therapieren und so den plötzlichen Herztod wirksamer verhindern zu können“, so Dr. Seebohm.

Titelaufnahme

Seebohm G, Strutz-Seebohm N, Ureche ON, Henrion U, Baltaev R, Mack AF, Korniychuk G, Steinke K, Tapken D, Pfeufer A, Kääb S, Bucci C, Attali B, Merot J, Tavare JM, Hoppe UC, Sanguinetti MC, Lang, F: „Long QT syndrome-associated mutations in KCNQ1 and KCNE1 subunits disrupt normal endosomal recycling of IKs channels.“ In: Circulation Research 2008, http://circres.ahajournals.org/cgi/content/abstract/CIRCRESAHA.108.177360v1?maxtoshow=&HITS=10&hits=10&RESULTFORMAT=&fulltext=seebohm&searchid

=1&FIRSTINDEX=0&resourcetype=HWCIT

Weitere Informationen

PD Dr. Guiscard Seebohm, Lehrstuhl für Biochemie I – Rezeptorbiochemie, Fakultät für Chemie und Biochemie der Ruhr-Universität, 44780 Bochum, Tel. 0234/32-23742, E-Mail: guiscard.seebohm@gmx.de

Redaktion: Meike Drießen

Media Contact

Dr. Josef König idw

Weitere Informationen:

http://www.ruhr-uni-bochum.de/

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Neues topologisches Metamaterial

… verstärkt Schallwellen exponentiell. Wissenschaftlerinnen und Wissenschaftler am niederländischen Forschungsinstitut AMOLF haben in einer internationalen Kollaboration ein neuartiges Metamaterial entwickelt, durch das sich Schallwellen auf völlig neue Art und Weise…

Astronomen entdecken starke Magnetfelder

… am Rand des zentralen schwarzen Lochs der Milchstraße. Ein neues Bild des Event Horizon Telescope (EHT) hat starke und geordnete Magnetfelder aufgespürt, die vom Rand des supermassereichen schwarzen Lochs…

Faktor für die Gehirnexpansion beim Menschen

Was unterscheidet uns Menschen von anderen Lebewesen? Der Schlüssel liegt im Neokortex, der äußeren Schicht des Gehirns. Diese Gehirnregion ermöglicht uns abstraktes Denken, Kunst und komplexe Sprache. Ein internationales Forschungsteam…

Partner & Förderer