Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

RUB-Forscher entlarven die Grundlagen erblicher Herzrhythmusstörungen

14.11.2008
Wie Stress das Herz aus dem Takt bringt
Mutierte Ionenkanäle lassen sich nicht richtig steuern

Jeder kennt das Herzklopfen bei körperlichem oder seelischem Stress: Eine sinnvolle Reaktion des Körpers, die auf eine gesteigerte Leistung vorbereitet. Empfindliche Menschen allerdings können bei Stress Herzrhythmusstörungen bekommen, die zu Ohnmachtsanfällen und im schlimmsten Fall zum plötzlichen Herztod führen können.

Wie der Stress diese Störungen auslöst, haben internationale Forscher um PD Dr. Guiscard Seebohm (Lehrstuhl für Biochemie I - Rezeptorbiochemie der Ruhr-Universität) nun auf molekularer Ebene untersucht.

Ihre Erkenntnisse über das Zusammenspiel des Stress-Hormons Cortisol mit mutierten Ionenkanälen der Herzmuskelzellen könnten Wege zu neuen Medikamenten weisen.

Elektrische Signale ein- und ausschalten

Der regelmäßige Herzrhythmus wird durch ein komplexes Zusammenspiel elektrischer Signale reguliert. Diese Signale entstehen durch den Strom von Ionen durch verschiedene Typen von Ionenkanälen in den Wänden der Herzmuskelzellen, die sich alle zu bestimmten Zeitpunkten öffnen und wieder schließen müssen. Funktioniert einer der Ionenkanäle nicht richtig, so kann das Zusammenspiel gestört werden, und das Herz gerät aus dem Takt. Eine bestimmte Form dieser Herzrhythmusstörungen - die so genannte Torsade de pointes-Arrhythmie - entsteht unter anderem durch Defekte in einem bestimmten Kaliumkanal (IKs-Kanal). Dieser Kaliumkanal sorgt für das rechtzeitige Abschalten des elektrischen Signals am Ende jedes Herzschlags. Ist er defekt, etwa aufgrund einer Mutation, hält das Signal zu lange an. Patienten mit einem solchen erblichen Defekt im IKs-Kanal neigen zu Herzrhythmusstörungen, die zu Blutdruckabfall und plötzlichem Herztod führen können.

Das Stresshormon Cortisol stimuliert Ionenkanäle im Herzen

Es ist bereits länger bekannt, dass Stress bei diesen Patienten die Rhythmusstörung auslösen kann. Die molekulare Grundlage dieser Reaktion war aber bisher weitgehend unklar und eine gezielte medikamentöse Behandlung daher schwierig. Forscher um PD Dr. Guiscard Seebohm kamen dem Problem auf die Spur. Im Jahr 2007 konnten sie zeigen, dass der IKs-Kanal bei Gesunden durch das Stresshormon Cortisol stimuliert wird. Cortisol aktiviert in Herzzellen ein bestimmtes Enzym (SGK1). Dieses wiederum löst eine Signalkaskade aus, die mehr IKs-Kanäle aus Speichern in der Zelle in die Plasmamembran, also an die Zelloberfläche, transportiert, wo sie ihre Funktion entfalten können.

Mutierte Ionenkanäle reagieren anders auf Cortisol

Um das Problem bei mutierten Ionenkanälen zu ergründen, schleusten die Forscher für ihre aktuelle Arbeit gesunde und mutierte Ionenkanäle in Froscheier, Zellkulturen und Mäusestammzellen ein. Die Funktion der Ionenkanäle untersuchten sie dann elektrophysiologisch und mikroskopisch. Ihr Ergebnis: Manche mutierte IKs-Kanäle, die bei Patienten mit erblichen Herzrhythmusstörungen vorkommen, reagieren anders auf Cortisol als die Kanäle von Gesunden. Einige der mutierten IKs-Kanäle werden durch das Enzym SGK1 nicht wie gesunde Kanäle stimuliert, sondern gehemmt. Die Forscher fanden auch die molekulare Grundlage dieser komplexen Veränderungen heraus: Die mutierten Kanäle gelangen nicht wie die gesunden in die intrazellulären Speicher. Deshalb kann das Enzym SGK1 den Transport dieser mutierten IKs-Kanäle in die Plasmamembran nicht mehr stimulieren, und es werden weniger Kanäle in die Plasmamembran eingebaut, so dass ihre Aktivität insgesamt abnimmt.

Hoffnung auf spezifischere Medikamente

Durch diese Erkenntnisse über die molekularen Grundlagen erblicher Herzrhythmusstörungen ergeben sich neue, vielversprechende Ansatzpunkte für die Therapie dieser potenziell tödlichen Krankheit. Auch die Entwicklung neuer spezifischerer Medikamente rückt in greifbare Nähe. "Wir hoffen, dass unsere Ergebnisse dazu beitragen, in Zukunft Herzrhythmusstörungen besser therapieren und so den plötzlichen Herztod wirksamer verhindern zu können", so Dr. Seebohm.

Titelaufnahme

Seebohm G, Strutz-Seebohm N, Ureche ON, Henrion U, Baltaev R, Mack AF, Korniychuk G, Steinke K, Tapken D, Pfeufer A, Kääb S, Bucci C, Attali B, Merot J, Tavare JM, Hoppe UC, Sanguinetti MC, Lang, F: "Long QT syndrome-associated mutations in KCNQ1 and KCNE1 subunits disrupt normal endosomal recycling of IKs channels." In: Circulation Research 2008, http://circres.ahajournals.org/cgi/content/abstract/CIRCRESAHA.108.177360v1?maxtoshow=&HITS=10&hits=10&RESULTFORMAT=&fulltext=seebohm&searchid

=1&FIRSTINDEX=0&resourcetype=HWCIT

Weitere Informationen

PD Dr. Guiscard Seebohm, Lehrstuhl für Biochemie I - Rezeptorbiochemie, Fakultät für Chemie und Biochemie der Ruhr-Universität, 44780 Bochum, Tel. 0234/32-23742, E-Mail: guiscard.seebohm@gmx.de

Redaktion: Meike Drießen

Dr. Josef König | idw
Weitere Informationen:
http://www.ruhr-uni-bochum.de/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wie Reize auf dem Weg ins Bewusstsein versickern
22.09.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Lebendiges Gewebe aus dem Drucker
22.09.2017 | Universitätsklinikum Freiburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie