Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

RUB-Forscher entdecken Schutzprotein gegen Chlor

18.12.2014

RUB-Forscher um Prof. Dr. Lars Leichert haben jetzt im Darmbakterium E. coli ein bisher unbekanntes Protein entdeckt, das die Bakterien vor Chlor beschützt. In Anwesenheit von Chlor bindet es an andere Proteine und schützt sie so vor dem Verklumpen. Ist die Gefahr vorüber, lässt es wieder los und die Proteine können weiterarbeiten. Über ihre Entdeckung des Proteins berichten die Forscher in der aktuellen Ausgabe von Nature Communications.

Chlor ist ein gängiges Desinfektionsmittel, das Bakterien tötet, etwa im Schwimmbad oder der Trinkwasserversorgung. Auch unser Immunsystem stellt Chlor her, das dazu führt, dass Proteine in Bakterien ihre natürlich Faltung verlieren, verklumpen und nicht mehr funktionieren.


Ein unbehandeltes Ei (links) im Vergleich zu einem Ei, das mit einem Tropfen Chlorbleiche behandelt wurde rechts): Diese lässt die Proteine verklumpen.

© RUB, Abt. Biochemie der Mikroorganismen

Zellen unter Sauerstoffstress

Die Forscher interessieren sich für oxidativen Stress, der auf Zellen einwirkt, wenn sie so genannten reaktiven Sauerstoffspezies ausgesetzt werden. Oxidativer Stress spielt zum Beispiel eine Rolle bei der Zellalterung, aber auch bei der Immunabwehr. Immunzellen produzieren reaktive Sauerstoffspezies und setzen damit Bakterien unter oxidativen Stress. Was aber passiert dann in den Bakterien, ganz besonders mit ihren Proteinen? Dieser Frage gehen die Forscher nach, indem sie gezielt nach Proteinen suchen, die sich durch oxidativen Stress verändern. So wurden sie auf das Protein RidA aufmerksam.

RidA ändert seine Funktion in Gegenwart von Chlor

„Jedes Protein hat eine Funktion“, erklärt Lars Leichert. RidA ist dafür zuständig, dass bei der Herstellung von bestimmten Aminosäuren ein Zwischenprodukt schneller abgebaut wird. Um herauszufinden, was mit RidA bei oxidativem Stress passiert, setzten die Forscher es allen möglichen reaktiven Spezies aus, die von Immunzellen hergestellt werden, darunter auch Chlor. Bestimmte reaktive Spezies inaktivieren RidA, das heißt das Zwischenprodukt wurde wie erwartet von RidA nicht mehr abgebaut.

Mit Chlor behandeltes RidA sorgte aber dafür, dass das Zwischenprodukt gar nicht erst hergestellt wurde. „Dafür konnten wir nur eine Erklärung finden: Mit Chlor behandeltes RidA bindet fest an das Protein, welches das Zwischenprodukt herstellt“, erklärt Alexandra Müller aus Leicherts Team. Anders gesagt: RidA wird in Anwesenheit von Chlor zu einem so genannten Chaperon.

Mit RidA trübt sich die Proteinlösung nicht

In dieser Funktion kann es andere Proteine beschützen: Wenn sich Proteine entfalten – das tun sie zum Beispiel wenn sie mit Chlor in Kontakt kommen oder erhitzt werden –, dann verklumpen sie. Das führt dazu, dass eine Proteinlösung trüb wird. „Bei einem Ei ist das besonders eindrucksvoll. Das durchsichtige Eiklar wird weiß und undurchsichtig, wenn sich die Proteine beim Kochen darin entfalten“, beschreibt Lars Leichert. Die Forscher können diese Trübung mit einem Fluoreszenzspektrometer genau messen. Wenn man aber mit Chlor behandeltes RidA dazu gibt, bleibt dieselbe Lösung klar. Verklumpte Proteine funktionieren nicht mehr – aus einem gekochten Ei schlüpft kein Küken. Ein Chaperon kann das Verklumpen verhindern und schützt deswegen die Zelle.

Klebriges Protein bindet an alle anderen

Darüber hinaus haben die Forscher auch herausgefunden, dass RidA nach dem Ende der Bedrohung durch Chlor die Proteine auch wieder loslassen kann, so dass sie ihre Funktion wieder ausüben können. Bei erneuter Chlor-Bedrohung bindet RidA wieder an Proteine. Außerdem wollten die Forscher wissen, wie genau RidA zum Chaperon wird. Experimente ergaben, dass die sogenannte N-Chlorinierung dazu führt, dass RidA viel hydrophober wird. Je hydrophober ein Protein ist, desto „klebriger“ wird es und umso besser können entfaltete Proteine daran binden. RidA schützt in diesem klebrigen Zustand die Proteine in der Bakterienzelle vor dem Verklumpen.

Forscher vermuten eine Rolle bei der Immunabwehr

Für den Einsatz von Chlor als Desinfektionsmittel hat das aber keine Folgen: RidA hilft Bakterien nur bei sehr geringen Chlormengen. Anders als bei Antibiotika gibt es bei Desinfektionsmitteln keine Resistenzen. „Wir denken, dass durch Chlor aktivierte Chaperone vor allem beim Zusammentreffen von Bakterien mit der Immunabwehr eine Rolle spielen“, sagt Lars Leichert.

Titelaufnahme

A. Müller, S. Langklotz, N. Lupilova, K. Kuhlmann, J. Bandow, L. Leichert (2014): Activation of RidA chaperone function by N-chlorination, Nature Communications, DOI: 10.1038/ncomm6804

Weitere Informationen

Prof. Dr. Lars Leichert, Medizinische Fakultät der RUB, Abteilung für Biochemie der Mikroorganismen, Tel. 0234/32-24585, E-Mail: lars.leichert@rub.de

Redaktion: Meike Drießen

Dr. Julia Weiler | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wie Pflanzen ihr Gedächtnis vererben
21.08.2017 | Gregor Mendel Institut für Molekulare Pflanzenbiologie (GMI)

nachricht Eine Karte der Zellkraftwerke
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Topologische Quantenzustände einfach aufspüren

Durch gezieltes Aufheizen von Quantenmaterie können exotische Materiezustände aufgespürt werden. Zu diesem überraschenden Ergebnis kommen Theoretische Physiker um Nathan Goldman (Brüssel) und Peter Zoller (Innsbruck) in einer aktuellen Arbeit im Fachmagazin Science Advances. Sie liefern damit ein universell einsetzbares Werkzeug für die Suche nach topologischen Quantenzuständen.

In der Physik existieren gewisse Größen nur als ganzzahlige Vielfache elementarer und unteilbarer Bestandteile. Wie das antike Konzept des Atoms bezeugt, ist...

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Wissenschaftliche Grundlagen für eine erfolgreiche Klimapolitik

21.08.2017 | Veranstaltungen

DGI-Forum in Wittenberg: Fake News und Stimmungsmache im Netz

21.08.2017 | Veranstaltungen

European Conference on Eye Movements: Internationale Tagung an der Bergischen Universität Wuppertal

18.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Studie für Patienten mit Prostatakrebs: Einteilung in genomische Gruppen soll Therapie präzisieren

21.08.2017 | Interdisziplinäre Forschung

Forscher entwickeln zweidimensionalen Kristall mit hoher Leitfähigkeit

21.08.2017 | Physik Astronomie

Ein neuer Indikator für marine Ökosystem-Veränderungen - der Dia/Dino-Index

21.08.2017 | Ökologie Umwelt- Naturschutz