Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Rotlicht steuert Nektarfluss

24.09.2010
Die Nektarproduktion von Limabohnen wird maßgeblich von der Lichtqualität beeinflusst

Blühende Pflanzen produzieren Nektar, um bestäubende Insekten anzulocken. Einige Pflanzenarten wie die Limabohne geben zusätzlich Nektar aus sogenannten extrafloralen Nektarien ab, um beispielsweise Ameisen zur Abwehr ihrer Fraßfeinde anzulocken.

Wissenschaftler des Jenaer Max Planck Instituts für chemische Ökologie haben jetzt herausgefunden, dass die Regulation der extrafloralen Nektarproduktion durch Licht gesteuert wird. Mithilfe eines bestimmten Lichtsensors, dem Phytochrom, konnten die Pflanzen nicht nur Tag und Nacht unterscheiden, sondern sie passten die Nektarabgabe den aktuellen Lichtverhältnissen an.

Durch die Phytochromwirkung wird wahrscheinlich ein spezielles Enzym reguliert, welches das Pflanzenhormon Jasmonsäure mit der Aminosäure Isoleucin verknüpft. Das dabei entstehende JA-Ile-Molekül beeinflusst die Abgabe des Blattnektars derart, dass die Verteidigung der Pflanze gegen Fraßschädlinge am effektivsten ist, sobald ein Befall mit Fraßfeinden droht – nämlich während des Tages. (PNAS Early Edition, DOI: 10.1073/pnas.1009007107)

Um zu überleben und ihre Art zu erhalten, müssen Pflanzen sich ständig gegen Fraßfeinde wehren. Dies tun sie entweder direkt durch die Herstellung wirksamer Gifte wie zum Beispiel Nikotin, oder indirekt, indem sie die Feinde ihrer Feinde zu Hilfe rufen. Dies geschieht beispielsweise durch die Abgabe von Duftstoffen, die von Schlupfwespen oder Raubwanzen wahrgenommen werden und diesen so den Weg zu ihrer Beute, beispielsweise einer pflanzenfressenden Raupe, weisen.

Eine andere Art der indirekten Verteidigung ist die Abgabe von Nektar aus bestimmten Blattorganen. Limabohnen locken so beispielsweise Ameisen an, die sich nicht nur an dem Nektar erfreuen, sondern gleichzeitig die Pflanze von Fraßfeinden befreien. Wissenschaftler aus der Abteilung Bioorganische Chemie widmen sich besonders dieser „süßen“ Art der pflanzlichen Verteidigung. Die aus Indien stammende Doktorandin Radhika Venkatesan hat zu diesem Thema Versuche durchgeführt und überprüft, ob die Nektarproduktion der Limabohne lichtabhängig ist. „Schließlich besteht Nektar im Wesentlichen aus Zuckern, und Zucker sind frühe Zwischenstufen der Photosynthese - also einem lichtabhängigen Prozess“, so die Wissenschaftlerin. Im Laufe ihrer Experimente, die in dieser Woche in der Fachzeitschrift „Proceedings of the National Academy of Sciences USA“ veröffentlicht wurden, kam sie einem alten Bekannten der Pflanzenforschung auf die Spur - dem so genannten Phytochrom. Pflanzen beherbergen in ihren Blättern Phytochrom als einen Lichtdetektor, der - im übertragenen Sinne - gern auch als das „Auge der Pflanze“ beschrieben wird.

„Nicht die Lichtmenge, sondern die Lichtqualität spielt eine entscheidende Rolle bei der Steuerung der Nektarproduktion in der Limabohne“, so Wilhelm Boland, Direktor des Max-Planck-Instituts. Hierbei absorbiert das Phytochrom der Pflanze langwellige, rote Lichtanteile, wodurch Pflanzen die Qualität des eingestrahlten Sonnenlichts bestimmen können, welches sich je nach Tages- oder Jahreszeit ändert. Die Experimente von Radhika Venkatesan zeigen nun erstmals, dass Pflanzen auch bei der Regulierung ihrer indirekten Abwehr gegen Schädlinge das Phytochromsystem einsetzen, um effektiv und ökonomisch ihre Verteidigungslinien aufzustellen.

Bekannt ist, dass das Pflanzenhormon Jasmonsäure (JA) als Signal bei der Blattschädigung durch Fraßfeinde dient und ihm so eine zentrale Rolle bei der Steuerung der Nektarsekretion zukommt. Die über das Phytochrom ablaufende Lichtsteuerung, so fanden die Wissenschaftler jetzt heraus, greift maßgeblich in die Signalwirkung der Jasmonsäure ein: Im Dunkeln hemmt freie Jasmonsäure den Nektarfluss, während sie im Hellen seine Produktion stimuliert. Den Schlüssel für dieses lichtgesteuerte Verhalten fand die Doktorandin in einer Reaktion, bei der Jasmonsäure mit der Aminosäure Isoleucin verbunden wird. Das dabei entstehende Konjugat JA-Ile ist der eigentlich wirksame Signalstoff, der den Nektar fließen lässt. Dieses bereits aus anderen Untersuchungen bekannte Signalmolekül konnte somit erstmalig als eigentlicher Auslöser der Produktion extrafloralen Nektars identifiziert werden. Zusätzliche Experimente bestätigten, dass sobald die Verknüpfung von JA und Isoleucin durch Zugabe eines Hemmstoffes unterbunden wurde, auch die Steigerung der Nektarproduktion ausblieb. Wurden Pflanzen im Dunkeln beschädigt, um die JA-Bildung anzuregen, wurde JA-Ile wiederum nur in denjenigen Blättern gebildet, die zuvor Rotlicht ausgesetzt worden waren. [JWK]

Originalveröffentlichung:
Venkatesan Radhika, Christian Kost, Axel Mithöfer, Wilhelm Boland (2010). Regulation of extrafloral nectar secretion by jasmonates in lima bean is light dependent. Proceedings of the National Academy of Sciences USA, Early Edition, 20. September 2010, DOI: 10.1073/pnas.1009007107
Weitere Informationen:
Prof. Dr. Wilhelm Boland, Max-Planck-Institut für chemische Ökologie, Hans-Knöll-Straße 8, 07745 Jena. Tel.: +49 (0)3641- 57 -1200; boland@ice.mpg.de
Bildanfragen:
Angela Overmeyer, Max-Planck-Institut für chemische Ökologie, Hans-Knöll-Straße 8, 07745 Jena. Tel.: +49 (0)3641- 57 2110; overmeyer@ice.mpg.de

Dr. Jan-Wolfhard Kellmann | idw
Weitere Informationen:
http://www.ice.mpg.de/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wie Reize auf dem Weg ins Bewusstsein versickern
22.09.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Lebendiges Gewebe aus dem Drucker
22.09.2017 | Universitätsklinikum Freiburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie