Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Rotlicht steuert Nektarfluss

24.09.2010
Die Nektarproduktion von Limabohnen wird maßgeblich von der Lichtqualität beeinflusst

Blühende Pflanzen produzieren Nektar, um bestäubende Insekten anzulocken. Einige Pflanzenarten wie die Limabohne geben zusätzlich Nektar aus sogenannten extrafloralen Nektarien ab, um beispielsweise Ameisen zur Abwehr ihrer Fraßfeinde anzulocken.

Wissenschaftler des Jenaer Max Planck Instituts für chemische Ökologie haben jetzt herausgefunden, dass die Regulation der extrafloralen Nektarproduktion durch Licht gesteuert wird. Mithilfe eines bestimmten Lichtsensors, dem Phytochrom, konnten die Pflanzen nicht nur Tag und Nacht unterscheiden, sondern sie passten die Nektarabgabe den aktuellen Lichtverhältnissen an.

Durch die Phytochromwirkung wird wahrscheinlich ein spezielles Enzym reguliert, welches das Pflanzenhormon Jasmonsäure mit der Aminosäure Isoleucin verknüpft. Das dabei entstehende JA-Ile-Molekül beeinflusst die Abgabe des Blattnektars derart, dass die Verteidigung der Pflanze gegen Fraßschädlinge am effektivsten ist, sobald ein Befall mit Fraßfeinden droht – nämlich während des Tages. (PNAS Early Edition, DOI: 10.1073/pnas.1009007107)

Um zu überleben und ihre Art zu erhalten, müssen Pflanzen sich ständig gegen Fraßfeinde wehren. Dies tun sie entweder direkt durch die Herstellung wirksamer Gifte wie zum Beispiel Nikotin, oder indirekt, indem sie die Feinde ihrer Feinde zu Hilfe rufen. Dies geschieht beispielsweise durch die Abgabe von Duftstoffen, die von Schlupfwespen oder Raubwanzen wahrgenommen werden und diesen so den Weg zu ihrer Beute, beispielsweise einer pflanzenfressenden Raupe, weisen.

Eine andere Art der indirekten Verteidigung ist die Abgabe von Nektar aus bestimmten Blattorganen. Limabohnen locken so beispielsweise Ameisen an, die sich nicht nur an dem Nektar erfreuen, sondern gleichzeitig die Pflanze von Fraßfeinden befreien. Wissenschaftler aus der Abteilung Bioorganische Chemie widmen sich besonders dieser „süßen“ Art der pflanzlichen Verteidigung. Die aus Indien stammende Doktorandin Radhika Venkatesan hat zu diesem Thema Versuche durchgeführt und überprüft, ob die Nektarproduktion der Limabohne lichtabhängig ist. „Schließlich besteht Nektar im Wesentlichen aus Zuckern, und Zucker sind frühe Zwischenstufen der Photosynthese - also einem lichtabhängigen Prozess“, so die Wissenschaftlerin. Im Laufe ihrer Experimente, die in dieser Woche in der Fachzeitschrift „Proceedings of the National Academy of Sciences USA“ veröffentlicht wurden, kam sie einem alten Bekannten der Pflanzenforschung auf die Spur - dem so genannten Phytochrom. Pflanzen beherbergen in ihren Blättern Phytochrom als einen Lichtdetektor, der - im übertragenen Sinne - gern auch als das „Auge der Pflanze“ beschrieben wird.

„Nicht die Lichtmenge, sondern die Lichtqualität spielt eine entscheidende Rolle bei der Steuerung der Nektarproduktion in der Limabohne“, so Wilhelm Boland, Direktor des Max-Planck-Instituts. Hierbei absorbiert das Phytochrom der Pflanze langwellige, rote Lichtanteile, wodurch Pflanzen die Qualität des eingestrahlten Sonnenlichts bestimmen können, welches sich je nach Tages- oder Jahreszeit ändert. Die Experimente von Radhika Venkatesan zeigen nun erstmals, dass Pflanzen auch bei der Regulierung ihrer indirekten Abwehr gegen Schädlinge das Phytochromsystem einsetzen, um effektiv und ökonomisch ihre Verteidigungslinien aufzustellen.

Bekannt ist, dass das Pflanzenhormon Jasmonsäure (JA) als Signal bei der Blattschädigung durch Fraßfeinde dient und ihm so eine zentrale Rolle bei der Steuerung der Nektarsekretion zukommt. Die über das Phytochrom ablaufende Lichtsteuerung, so fanden die Wissenschaftler jetzt heraus, greift maßgeblich in die Signalwirkung der Jasmonsäure ein: Im Dunkeln hemmt freie Jasmonsäure den Nektarfluss, während sie im Hellen seine Produktion stimuliert. Den Schlüssel für dieses lichtgesteuerte Verhalten fand die Doktorandin in einer Reaktion, bei der Jasmonsäure mit der Aminosäure Isoleucin verbunden wird. Das dabei entstehende Konjugat JA-Ile ist der eigentlich wirksame Signalstoff, der den Nektar fließen lässt. Dieses bereits aus anderen Untersuchungen bekannte Signalmolekül konnte somit erstmalig als eigentlicher Auslöser der Produktion extrafloralen Nektars identifiziert werden. Zusätzliche Experimente bestätigten, dass sobald die Verknüpfung von JA und Isoleucin durch Zugabe eines Hemmstoffes unterbunden wurde, auch die Steigerung der Nektarproduktion ausblieb. Wurden Pflanzen im Dunkeln beschädigt, um die JA-Bildung anzuregen, wurde JA-Ile wiederum nur in denjenigen Blättern gebildet, die zuvor Rotlicht ausgesetzt worden waren. [JWK]

Originalveröffentlichung:
Venkatesan Radhika, Christian Kost, Axel Mithöfer, Wilhelm Boland (2010). Regulation of extrafloral nectar secretion by jasmonates in lima bean is light dependent. Proceedings of the National Academy of Sciences USA, Early Edition, 20. September 2010, DOI: 10.1073/pnas.1009007107
Weitere Informationen:
Prof. Dr. Wilhelm Boland, Max-Planck-Institut für chemische Ökologie, Hans-Knöll-Straße 8, 07745 Jena. Tel.: +49 (0)3641- 57 -1200; boland@ice.mpg.de
Bildanfragen:
Angela Overmeyer, Max-Planck-Institut für chemische Ökologie, Hans-Knöll-Straße 8, 07745 Jena. Tel.: +49 (0)3641- 57 2110; overmeyer@ice.mpg.de

Dr. Jan-Wolfhard Kellmann | idw
Weitere Informationen:
http://www.ice.mpg.de/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Kupferhydroxid-Nanopartikel schützen vor toxischen Sauerstoffradikalen im Zigarettenrauch
30.03.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nierentransplantationen: Weisse Blutzellen kontrollieren Virusvermehrung
30.03.2017 | Universität Basel

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Atome rennen sehen - Phasenübergang live beobachtet

Ein Wimpernschlag ist unendlich lang dagegen – innerhalb von 350 Billiardsteln einer Sekunde arrangieren sich die Atome neu. Das renommierte Fachmagazin Nature berichtet in seiner aktuellen Ausgabe*: Wissenschaftler vom Center for Nanointegration (CENIDE) der Universität Duisburg-Essen (UDE) haben die Bewegungen eines eindimensionalen Materials erstmals live verfolgen können. Dazu arbeiteten sie mit Kollegen der Universität Paderborn zusammen. Die Forscher fanden heraus, dass die Beschleunigung der Atome jeden Porsche stehenlässt.

Egal wie klein sie sind, die uns im Alltag umgebenden Dinge sind dreidimensional: Salzkristalle, Pollen, Staub. Selbst Alufolie hat eine gewisse Dicke. Das...

Im Focus: Kleinstmagnete für zukünftige Datenspeicher

Ein internationales Forscherteam unter der Leitung von Chemikern der ETH Zürich hat eine neue Methode entwickelt, um eine Oberfläche mit einzelnen magnetisierbaren Atomen zu bestücken. Interessant ist dies insbesondere für die Entwicklung neuartiger winziger Datenträger.

Die Idee ist faszinierend: Auf kleinstem Platz könnten riesige Datenmengen gespeichert werden, wenn man für eine Informationseinheit (in der binären...

Im Focus: Quantenkommunikation: Wie man das Rauschen überlistet

Wie kann man Quanteninformation zuverlässig übertragen, wenn man in der Verbindungsleitung mit störendem Rauschen zu kämpfen hat? Uni Innsbruck und TU Wien präsentieren neue Lösungen.

Wir kommunizieren heute mit Hilfe von Funksignalen, wir schicken elektrische Impulse durch lange Leitungen – doch das könnte sich bald ändern. Derzeit wird...

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Nierentransplantationen: Weisse Blutzellen kontrollieren Virusvermehrung

30.03.2017 | Biowissenschaften Chemie

Zuckerrübenschnitzel: der neue Rohstoff für Werkstoffe?

30.03.2017 | Materialwissenschaften

Integrating Light – Your Partner LZH: Das LZH auf der Hannover Messe 2017

30.03.2017 | HANNOVER MESSE