Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Rotlicht zur Energiegewinnung

01.09.2010
Ein neu entdecktes Chlorophyll-Molekül absorbiert Licht im nahen Infrarotbereich und eröffnet damit Potenziale für Energiegewinnung und Krebstherapie.

In der Photosynthese werden aus Wasser und Kohlendioxid energiereiche Kohlenhydrate hergestellt, die dem Menschen, Tieren, Pilzen und den meisten Bakterien als Nahrung dienen.

Als „Abfallprodukt“ entsteht hierbei Sauerstoff. Schlüsselmoleküle für die Funktionsweise der Photosynthese von Pflanzen, Algen und bestimmten Bakterien sind die Chlorophylle. Diese natürlichen Farbstoffe sind unter anderem verantwortlich für die Lichtabsorption, den Energietransfer und den Elektronentransfer während der Photosynthese. Sie sind auch für die grüne Farbe von Pflanzen verantwortlich.

Ein internationales Forscherteam mit Beteiligung der Ludwig-Maximilians-Universität München hat in dichten Matten von Cyanobakterien (Stromatolithen) an der westaustralischen Shark Bay ein neues Chlorophyll-Molekül nachgewiesen, das besonders langwelliges Licht im nahen Infrarotbereich absorbieren kann. Stromatolithen gehören zu den ältesten bekannten Organismen-Gemeinschaften der Erde.

Ein Chlorophyll für alle Fälle

Chlorophylle sind für die Lichtabsorption bei der Photosynthese zuständig. Es gibt dabei verschiedene Arten von Chlorophyll-Molekülen, die Licht unterschiedlicher Wellenlängen absorbieren können. Bis vor Kurzem wurde angenommen, dass allein das Chlorophyll a, die häufigste Variante in grünen Pflanzen, in der Lage ist, den eigentlichen Energiewandlungsprozess auszuführen. Rotes Licht von weniger als 700nm Wellenlänge würde damit eine energetische Grenze markieren (sog. Rotabfall, vgl. Vorarlberger Bildungsserver). Später entdeckte man bei einem speziellen Cyanobakterium Chlorophyll d, das Licht oberhalb von 700nm für die Photosynthese nutzbar macht. Das neu entdeckte Chlorophyll f kann noch langwelligere Strahlung als die anderen insgesamt vier bekannten Chlorophylle (a, b, c und d) der Sauerstoff-produzierenden (oxigenen) Photosynthese absorbieren.

In den dichten Algenmatten konkurrieren die Photosynthese betreibenden Cyanobakterien um das Sonnenlicht. Während die in den oberen Schichten lebenden Organismen fast die gesamte sichtbare Sonnenstrahlung abfangen, bleibt für die unteren im Schatten lebenden Organismen kaum Licht im sichtbaren Bereich übrig. Dies führt, so die Annahme der Forscher, zu einem hohen Selektionsdruck das wenige durchgedrungene sichtbare Licht zu nutzen oder aber das von Chlorophyll a nicht absorbierte nahe Infrarotlicht.

In einigen Cyanobakterien aus tieferen, dunkleren Schichten fanden die Wissenschaftler dann auch wirklich ein auf Rotlicht spezialisiertes Chlorophyll. Dieses Chlorophyll f unterscheidet sich in seiner Struktur nicht sehr von den bekannten Arten. Entscheidend für die Verschiebung der Absorption hin zu Licht im nahen Infrarotbereich ist allein die genaue Position einer einzelnen sogenannten Formyl-Gruppe im Chlorophyll-Molekül.

In die Zukunft gedacht

Das Chlorophyll f ist das erste Chlorophyll, das seit mehr als 60 Jahren entdeckt wurde.

Die neuen Erkenntnisse könnten helfen, gezielt spektrale Änderungen an unterschiedlichen Chlorophyll-Molekülen durchzuführen, um deren Funktion zu verändern. Potenziale bringt dies zum Beispiel für die Entwicklung technischer Anlagen für die energetische Nutzung von Licht (z.B. Solaranlagen, Biomassekraftwerke), die dadurch einen größeren Wirkungsgrad bekommen könnten. Und auch medizinische Ansätze gibt es bereits: Bei der photodynamischen Krebstherapie sammeln sich lichtempfindliche Medikamente im Tumor an. Diese werden durch die gezielte Bestrahlung mit Licht von außen aktiviert. Im nahen Infrarotbereich absorbierende Chlorophyll-Moleküle sind hier besonders interessant, da Strahlung in diesem Spektralbereich besonders tief in das Gewebe eindringen kann.

Publikation:
Min Chen et al. (2010): A red-shifted chlorophyll. Science online (19. August 2010), DOI: 10.1126/science.1191127 (http://www.sciencemag.org/cgi/content/abstract/science.1191127).

| Pflanzenforschung.de
Weitere Informationen:
http://www.pflanzenforschung.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Mit Barcodes der Zellentwicklung auf der Spur
17.08.2017 | Deutsches Krebsforschungszentrum

nachricht Magenkrebs: Auch Bakterien können Auslöser sein
17.08.2017 | Charité – Universitätsmedizin Berlin

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Im Focus: Exotische Quantenzustände: Physiker erzeugen erstmals optische „Töpfe" für ein Super-Photon

Physikern der Universität Bonn ist es gelungen, optische Mulden und komplexere Muster zu erzeugen, in die das Licht eines Bose-Einstein-Kondensates fließt. Die Herstellung solch sehr verlustarmer Strukturen für Licht ist eine Voraussetzung für komplexe Schaltkreise für Licht, beispielsweise für die Quanteninformationsverarbeitung einer neuen Computergeneration. Die Wissenschaftler stellen nun ihre Ergebnisse im Fachjournal „Nature Photonics“ vor.

Lichtteilchen (Photonen) kommen als winzige, unteilbare Portionen vor. Viele Tausend dieser Licht-Portionen lassen sich zu einem einzigen Super-Photon...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Einblicke ins menschliche Denken

17.08.2017 | Veranstaltungen

Eröffnung der INC.worX-Erlebniswelt während der Technologie- und Innovationsmanagement-Tagung 2017

16.08.2017 | Veranstaltungen

Sensibilisierungskampagne zu Pilzinfektionen

15.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Scharfe Röntgenblitze aus dem Atomkern

17.08.2017 | Physik Astronomie

Fake News finden und bekämpfen

17.08.2017 | Interdisziplinäre Forschung

Effizienz steigern, Kosten senken!

17.08.2017 | Messenachrichten