Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Rotaxan-Moleküle aus Erbgutmaterial für die Nanorobotik

23.04.2010
In die Nanomechanik kommt Bewegung. Wissenschaftlern der Universität Bonn ist es erstmals gelungen, aus DNA-Doppelsträngen ein Molekül, ein so genanntes Rotaxan, herzustellen, dessen Einzelteile mechanisch frei beweglich sind. Wie die Forscher in der aktuellen Ausgabe der Fachzeitschrift "Nature Nanotechnology" (doi: 10.1038/NNANO.2010.65) schreiben, stehen der Nanorobotik und der Synthetischen Biologie ganz neue Möglichkeiten offen.

Schon seit Jahren tüfteln Biochemiker an Rotaxanen. Der aus dem Altgriechischen abgeleitete Name bedeutet so viel wie "Radachse" - nicht ohne Grund. Denn ein Rotaxan-Molekül besteht vor allem aus einer Achse und einem darüber eingefädelten Ring. Damit der Ring sich nicht von der Achse lösen kann, sind an den Enden so genannte "Stopper" angebracht, die selbst wiederum aus miteinander verschränkten Ringen bestehen.

Das ganze Gebilde sieht ein wenig wie eine Hantel aus, über dessen Griffstange ein Ring aufgezogen wurde (s. Abb.) Die bisherigen Rotaxane entstammen allesamt der organischen Chemie, die wesentlich kleiner sind und deshalb eine geringere Spanne an mechanischer Bewegung im Nanometerbereich zulassen. Außerdem kann die DNA relativ einfach weiter funktionalisiert werden, wodurch sehr schnell raffinierte mechanische Systeme entwickelt werden können.

Bausteine des Lebens als Konstruktionsmaterial

Das Forscherteam um Dr. Damian Ackermann und Prof. Michael Famulok vom Life & Medical Sciences (LIMES)-Institut der Universität Bonn hat sich für die neuen Rotaxane eines Baustoffes bedient, der eigentlich als Baustein des Lebens bekannt ist: DNA. Der Doppelstrang aus Nukleotiden ist für die Chemiker aber nicht in erster Linie wegen seiner Erbgutträgerfunktion interessant, sondern vor allem aus "architektonischen" Gründen. Die Doppelhelix bildet ein sehr stabiles Grundgerüst. Außerdem lässt sich einer der Stränge an jeder beliebigen Stelle herausnehmen und sozusagen als Anknüpfungspunkt für weitere Bauteile verwenden. "DNA eignet sich durch die Spezifität der Einzelstränge, das bietet uns ganz viele Möglichkeiten", erläutert Damian Ackermann. "DNA ist wie eine Art Legostein - das ideale Baumaterial für die Nanoarchitektur", ergänzt Prof. Famulok.

Rädchen zum Nanomotor

Die Bonner Biochemiker haben ein Rotaxan geschaffen, das es so bisher noch nicht gab: Eine stabile mechanische Einheit mit einem frei beweglichen inneren Ring. Nun ist vieles möglich. "Wir können uns einiges vorstellen", so Prof. Famulok. "Das Ziel ist es zunächst einmal, kontrollierbare bewegliche Systeme auf Nanoebene zu bauen. Die Achse und die Räder sind da und wir haben einige Ideen, welchen Antrieb man ausprobieren könnte, um die Räder in Bewegung zu setzen." Diese Nanomotoren könnten dann auch mit biologischen Systemen wie z.B. Proteinen kompatibel sein.

Die Forscher wissen nun, dass sie mit den DNA Rotaxanen die Grundlage erarbeitet haben um unterschiedlichste nano-mechanische Systeme auf der Basis von mechanisch verbundener doppelsträngiger DNA aufzubauen. Was dabei genau am Ende herauskommt, ist zunächst einmal nicht das Wichtigste. "Entscheidend ist, dass wir einen Satz neuartiger Bausteine in der Hand haben, mit denen wir Dinge konstruieren können, die vorher so nicht möglich waren" sagt Ackermann "die Grenzen der Phantasie sind sozusagen ein wenig erweitert worden."

Kontakt:
Damian Ackermann
Life & Medical Sciences (LIMES)-Institut
Telefon.: 0228-73-2667
E-Mail: damian.ackermann@uni-bonn.de
Prof. Michael Famulok
Life & Medical Sciences (LIMES)-Institut Abteilungsleiter Chemische Biologie
Telefon: 0228-73-5661
E-Mail: m.famulok@uni-bonn.de

Dr. Andreas Archut | idw
Weitere Informationen:
http://www.uni-bonn.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht 'Fix Me Another Marguerite!'
23.06.2017 | Universität Regensburg

nachricht Schimpansen belohnen Gefälligkeiten
23.06.2017 | Max-Planck-Institut für Mathematik in den Naturwissenschaften (MPIMIS)

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: Die Schweiz in Pole-Position in der neuen ESA-Mission

Die Europäische Weltraumagentur ESA gab heute grünes Licht für die industrielle Produktion von PLATO, der grössten europäischen wissenschaftlichen Mission zu Exoplaneten. Partner dieser Mission sind die Universitäten Bern und Genf.

Die Europäische Weltraumagentur ESA lanciert heute PLATO (PLAnetary Transits and Oscillation of stars), die grösste europäische wissenschaftliche Mission zur...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von Batterieforschung bis Optoelektronik

23.06.2017 | Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

„Fit für die Industrie 4.0“ – Tagung von Hochschule Darmstadt und Schader-Stiftung am 27. Juni

22.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Dünenökosysteme modellieren

23.06.2017 | Ökologie Umwelt- Naturschutz

Makro-Mikrowelle macht Leichtbau für Luft- und Raumfahrt effizienter

23.06.2017 | Materialwissenschaften

'Fix Me Another Marguerite!'

23.06.2017 | Biowissenschaften Chemie