Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Roquin erkennt neu entdecktes RNA-Motiv in Genen

24.03.2016

Wissenschaftler des Helmholtz Zentrums München haben eine bisher unbekannte Haarnadelstruktur in der Boten-RNA (mRNA) von immunologisch relevanten Genen identifiziert, die das Bindeprotein Roquin mit einer ähnlich hohen Affinität wie das bisher bekannte Abbauelements CDE (constitutive decay element) erkennt. Beide Haarnadelstrukturen sind physiologisch bedeutsam, da sie im Roquin-induzierten mRNA-Abbau zusammenarbeiten.

Roquin spielt eine Schlüsselrolle bei der Aktivierung und Differenzierung von T-Zellen. Durch sein regulierendes Eingreifen in die Expression von Proteinen ist Roquin von zentraler Bedeutung für die immunologische Toleranz des Körpers.


Ausschnitt aus der Kristallstruktur der Roquin ROQ-Domäne (grau, im Hintergrund angedeutet) im Komplex mit der neu identifizierten Hexa-loop RNA-Haarnadel

Helmholtz Zentrum München

„Die Aufklärung der Ziel-mRNA und deren Erkennung stellt die Basis im Verständnis der Roquinfunktion dar, die zukünftige pharmakologische Modulationen ermöglichen wird“, sagt Prof. Dr. Michael Sattler, Direktor des Instituts für Strukturbiologie (STB) am Helmholtz Zentrum München.

Struktur und Funktion neuer regulatorischer Motive in der Boten-RNA

Während die Transkription im Zellkern auf dem Erkennen von Sequenzen in der DNA beruht, setzt die posttranskriptionale Genregulation im Zytoplasma durch RNA-Bindeproteine an der Bindung von Sekundärstruktur und Sequenz der RNA an. Daraus resultieren dynamische und hochkomplexe Regulationsmechanismen, die eine zentrale Bedeutung bei der Entstehung von physiologischen und pathologischen Immunreaktionen besitzen.

Das Verständnis dieser molekularen Vorgänge sind die Grundlagen, um die pathologischen Immunreaktionen besser zu verstehen. „Die Identifizierung unterschiedlicher Sequenzmotive in mRNAs, die von Roquin gebunden werden, ermöglicht uns jetzt herauszufinden, wie diese verschiedenen Strukturen in größeren cis-regulatorischen Sequenzen in den von Roquin kontrollierten RNA-Molekülen zusammenarbeiten“, so Prof. Dr. Vigo Heissmeyer, Leiter der Abteilung Molekulare Immunregulation (AMIR) am Helmholtz Zentrum München.

Überraschenderweise zeigten die Untersuchungen, dass nicht nur ein bisher bekanntes RNA-Haarnadelmotiv mit drei ungepaarten Basen, sondern auch ein neuartiges Motiv bestehend aus einer Schleife mit sechs ungepaarten Basen, von Roquin erkannt wird. „Die strukturelle Aufklärung der zugrundeliegenden Proteine ist hier ein wichtiger Ansatz, um die molekularen Grundlagen immunologischer Prozesse im Detail zu verstehen, und kann in Zukunft neue Wege für eine gezielte Therapie von Immunerkrankungen eröffnen,“ ergänzt Prof. Dr. Dierk Niessing, Leiter der Arbeitsgruppe RNA-Biologie am Institut für Strukturbiologie.
Weiter Informationen

Original-Publikation:

Janowski, R. et al. (2016). Roquin recognizes a non-canonical hexaloop structure in the 30-UTR of Ox40, nature communications; DOI: 10.1038/ncomms11032

Link zur Fachpublikation http://www.nature.com/ncomms/2016/160324/ncomms11032/abs/ncomms11032.html

Das Helmholtz Zentrum München verfolgt als Deutsches Forschungszentrum für Gesundheit und Umwelt das Ziel, personalisierte Medizin für die Diagnose, Therapie und Prävention weit verbreiteter Volkskrankheiten wie Diabetes mellitus und Lungenerkrankungen zu entwickeln. Dafür untersucht es das Zusammenwirken von Genetik, Umweltfaktoren und Lebensstil. Der Hauptsitz des Zentrums liegt in Neuherberg im Norden Münchens. Das Helmholtz Zentrum München beschäftigt rund 2.300 Mitarbeiter und ist Mitglied der Helmholtz-Gemeinschaft, der 18 naturwissenschaftlich-technische und medizinisch-biologische Forschungszentren mit rund 37.000 Beschäftigten angehören. www.helmholtz-muenchen.de

Das Institut für Strukturbiologie (STB) erforscht die Raumstruktur biologischer Makromoleküle, analysiert deren Struktur und Dynamik und entwickelt NMR-spektroskopie Methoden für diese Untersuchungen. Ziel ist es, molekulare Mechanismen der biologischen Aktivität dieser Moleküle und ihre Beteiligung an Krankheiten aufzuklären. Die Strukturdaten werden als Grundlage für die rationale Entwicklung kleiner Molekülinhibitoren in Verbindung mit Ansätzen der chemischen Biologie angewandt. https://www.helmholtz-muenchen.de/en/stb/

Die Abteilung Molekulare Immunregulation (AMIR) erforscht molekulare Mechanismen von physiologischen und pathologischen Immunantworten wie z.B. Autoimmunerkrankungen Typ-1-Diabetes und Lupus erythematodes. Das Ziel von AMIR ist, die molekularen Programme in T-Zellen, die die Unterscheidung zwischen körpereigenen und körperfremden Strukturen ermöglichen, zu verstehen. Im Fokus stehen post-transkriptionale Genregulationen. https://www.helmholtz-muenchen.de/amir/die-abteilung/die-abteilung-amir/index.ht....

Ansprechpartner für die Medien

Abteilung Kommunikation, Helmholtz Zentrum München -Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Ingolstädter Landstraße 1, 85764 Neuherberg, Tel.: +49 89 3187-2238, E-Mail presse@helmholtz-muenchen.de

Wissenschaftlicher Ansprechpartner

Prof. Dr. Michael Sattler, Helmholtz Zentrum München -Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Institut für Strukturbiologie, Ingolstädter Landstraße 1, 85764 Neuherberg, Tel.: +49 89 3187 3800 E-Mail: sattler@helmholtz-muenchen.de

Prof. Dr. Vigo Heissmeyer, Helmholtz Zentrum München -Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Abteilung Molekulare Immunregulation (AMIR), Ingolstädter Landstraße 1, 85764 Neuherberg, Tel.: +49 89 3187 1214 E-Mail: vigo.heissmeyer@helmholtz-muenchen.de

Weitere Informationen:

https://www.helmholtz-muenchen.de/aktuelles/uebersicht/pressemitteilungnews/arti...

Susanne Eichacker | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht In Hochleistungs-Mais sind mehr Gene aktiv
19.01.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Warum es für Pflanzen gut sein kann auf Sex zu verzichten
19.01.2018 | Universität Wien

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Maschinelles Lernen im Quantenlabor

Auf dem Weg zum intelligenten Labor präsentieren Physiker der Universitäten Innsbruck und Wien ein lernfähiges Programm, das eigenständig Quantenexperimente entwirft. In ersten Versuchen hat das System selbständig experimentelle Techniken (wieder)entdeckt, die heute in modernen quantenoptischen Labors Standard sind. Dies zeigt, dass Maschinen in Zukunft auch eine kreativ unterstützende Rolle in der Forschung einnehmen könnten.

In unseren Taschen stecken Smartphones, auf den Straßen fahren intelligente Autos, Experimente im Forschungslabor aber werden immer noch ausschließlich von...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Fliegen wird smarter – Kommunikationssystem LYRA im Lufthansa FlyingLab

• Prototypen-Test im Lufthansa FlyingLab
• LYRA Connect ist eine von drei ausgewählten Innovationen
• Bessere Kommunikation zwischen Kabinencrew und Passagieren

Die Zukunft des Fliegens beginnt jetzt: Mehrere Monate haben die Finalisten des Mode- und Technologiewettbewerbs „Telekom Fashion Fusion & Lufthansa FlyingLab“...

Im Focus: Ein Atom dünn: Physiker messen erstmals mechanische Eigenschaften zweidimensionaler Materialien

Die dünnsten heute herstellbaren Materialien haben eine Dicke von einem Atom. Sie zeigen völlig neue Eigenschaften und sind zweidimensional – bisher bekannte Materialien sind dreidimensional aufgebaut. Um sie herstellen und handhaben zu können, liegen sie bislang als Film auf dreidimensionalen Materialien auf. Erstmals ist es Physikern der Universität des Saarlandes um Uwe Hartmann jetzt mit Forschern vom Leibniz-Institut für Neue Materialien gelungen, die mechanischen Eigenschaften von freitragenden Membranen atomar dünner Materialien zu charakterisieren. Die Messungen erfolgten mit dem Rastertunnelmikroskop an Graphen. Ihre Ergebnisse veröffentlichen die Forscher im Fachmagazin Nanoscale.

Zweidimensionale Materialien sind erst seit wenigen Jahren bekannt. Die Wissenschaftler André Geim und Konstantin Novoselov erhielten im Jahr 2010 den...

Im Focus: Forscher entschlüsseln zentrales Reaktionsprinzip von Metalloenzymen

Sogenannte vorverspannte Zustände beschleunigen auch photochemische Reaktionen

Was ermöglicht den schnellen Transfer von Elektronen, beispielsweise in der Photosynthese? Ein interdisziplinäres Forscherteam hat die Funktionsweise wichtiger...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Kongress Meditation und Wissenschaft

19.01.2018 | Veranstaltungen

LED Produktentwicklung – Leuchten mit aktuellem Wissen

18.01.2018 | Veranstaltungen

6. Technologie- und Anwendungsdialog am 18. Januar 2018 an der TH Wildau: „Intelligente Logistik“

18.01.2018 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rittal vereinbart mit dem Betriebsrat von RWG Sozialplan - Zukunftsorientierter Dialog führt zur Einigkeit

19.01.2018 | Unternehmensmeldung

Open Science auf offener See

19.01.2018 | Geowissenschaften

Original bleibt Original - Neues Produktschutzverfahren für KFZ-Kennzeichenschilder

19.01.2018 | Informationstechnologie