Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Röntgenuntersuchung zeigt: Arsen sammelt sich bei Pflanzen im Zellkern

24.06.2016

Giftiges Arsen sammelt sich bei Pflanzen zunächst im Zellkern. Das zeigt eine Röntgenuntersuchung der Wasserpflanze Raues Hornblatt (Ceratophyllum demersum) an DESYs Röntgenlichtquelle PETRA III. Schon bei vergleichsweise geringer Konzentration überschwemmt das Arsen auch die Vakuole, einen mit Flüssigkeit gefüllten Hohlraum, der nahezu den gesamten Innenraum der Zelle einnimmt. Das haben Forscher um Prof. Hendrik Küpper von der Tschechischen Akademie der Wissenschaften und der Südböhmischen Universität in Budweis (Tschechien) in einem Projekt herausgefunden, das Dr. Seema Mishra (jetzt am National Botanical Research Institute in Lucknow, Indien) in Küppers Gruppe etabliert hatte.

Das hochgiftige Arsen ist weltweit ein wachsendes Umwelt- und Gesundheitsproblem. Durch menschliche Aktivitäten steigt die Arsenkonzentration in Böden, und in vielen Ländern – insbesondere auf dem indischen Subkontinent – ist die Arsenkonzentration im Grundwasser problematisch. Dort ist Arsen natürlicherweise im Boden vorhanden, wurde aber durch Brunnenbohrungen und andere Eingriffe des Menschen in den Boden in den vergangenen Jahrzehnten viel mobiler und so ins Trinkwasser ausgewaschen.


Arsenverteilung in der Blatthaut bei einer Konzentration von einem (oben) und fünf (unten) Mikromol Arsen pro Liter Wasser. Bei geringer Konzentration sammelt sich das Arsen im Zellkern.

Mishra et al., Journal of Experimental Botany, DOI: 10.1093/jxb/erw238, CC-BY-3.0 (https://creativecommons.org/licenses/by/3.0/)

Bei Menschen kann Arsen unter anderem zu Krebs, Absterben ganzer Körperregionen sowie akutem Nieren- und Kreislaufversagen führen. Auch für Pflanzen ist das Halbmetall giftig. Es wird vom selben Transportmechanismus aufgenommen wie das lebenswichtige Phosphor und hemmt schon weit unterhalb der tödlichen Dosis das Pflanzenwachstum und damit den Ertrag von Nutzpflanzen.

„Außerdem essen natürlich auch Menschen Pflanzen und verfüttern sie an Nutztiere, so dass sich das Arsen anreichert und am Ende irgendwann beim Menschen landet“, erläutert Küpper das Problem. „Mit unserer Analyse wollten wir genauer untersuchen, wie die Arsenvergiftung in Pflanzen abläuft“, ergänzt Ko-Autor Dr. Gerald Falkenberg von DESY, Leiter der Messstation P06, an der die Versuche stattfanden. Die Forscher berichten im Fachblatt „Journal of Experimental Botany“ über ihre Ergebnisse. Die Ergebnisse könnten etwa dazu beitragen, Pflanzen gezielt so zu züchten, dass sie nicht mehr so viel Arsen aufnehmen.

Bisherige Untersuchungen an Pflanzen haben Küpper zufolge meist bei viel zu hohen Arsenkonzentrationen stattgefunden. „Pflanzenphysiologisch ist bereits eine Konzentration von einem Mikromol pro Liter relevant, das sind rund 75 millionstel Gramm Arsen pro Liter. Experimentiert wurde aber nicht selten mit bis zu 250 Mikromol pro Liter – da geschehen ganz andere Dinge“, erläutert der Biologe. „Wir wollten wissen, was bei ökologisch und physiologisch relevanten Konzentrationen passiert.“

Das Raue Hornblatt ist nach Worten der Forscher für Metalle eine Indikator-Art, deren Untersuchung sich meist gut auf andere Arten übertragen lässt. Die Forscher setzten die untersuchte Pflanze Arsenkonzentrationen von einem und fünf Mikromol pro Liter aus und durchleuchteten anschließend mit dem fein gebündelten Röntgenstrahl von PETRA III die Blätter. „Mit PETRA III konnten wir zum ersten Mal in die einzelnen Pflanzenzellen hineinsehen“, berichtet Küpper. „So konnten wir das Arsen in der Zelle genauer lokalisieren – schließlich ist es nicht egal, ob es etwa in der Zellwand sitzt oder in der Vakuole.“

Eine Konzentration von einem Mikromol Arsen pro Liter Wasser ist für die Pflanze noch tolerabel. Die Pflanze lagert das Gift dabei zunächst in der Blatthaut, der Epidermis. „Überraschenderweise stellen wir fest, dass sich das Arsen zunächst in den Zellkernen sammelt“, berichtet Küpper. Erst wenn die Konzentration auf fünf Mikromol pro Liter steigt, was die Pflanze nicht dauerhaft überleben kann, findet sich das Arsen in der Vakuole und damit quasi in der gesamten Zelle.

„Damit ist die Kapazität der Epidermis erschöpft, die Pflanze kann nicht mehr entgiften, jetzt geht es ans Eingemachte“, beschreibt Küpper. Das Arsen wandert nun auch in das sogenannte Mesophyll, das Grundgewebe der Blätter, wo die Photosynthese stattfindet, die Pflanze Licht aufnimmt und Zucker produziert. Diese Änderung der Verteilung ist in der Röntgentomographie der Blätter deutlich zu sehen.

Die Untersuchung zeigt, dass Arsen solche Enzyme schädigt, die den für die Photosynthese nötigen grünen Pflanzenfarbstoff Chlorophyll bilden. Arsen beeinträchtigt zuerst die Photosynthese, was nicht an einem Abbau von Chlorophyll liegt, sondern an einer Beeinträchtigung der Produktion des Farbstoffs, wie Küpper betont.

In künftigen Untersuchungen wollen die Forscher nun herausfinden, was das Arsen im Zellkern bewirkt. „Vermutlich gibt es Erbgutschäden“, erläutert Küpper. So könnte Arsen im Erbgut den Phosphor ersetzen. Während die jetzige Röntgenuntersuchung zeigt, dass Arsen bereits bei niedrigen Konzentrationen im Zellkern angereichert wird, planen die Forscher, in weiteren Experimenten die chemische Bindung des Arsens im Zellkern im Vergleich zu anderen Orten der Zelle zu untersuchen.


Das Deutsche Elektronen-Synchrotron DESY ist das führende deutsche Beschleunigerzentrum und eines der führenden weltweit. DESY ist Mitglied der Helmholtz-Gemeinschaft und wird zu 90 Prozent vom BMBF und zu 10 Prozent von den Ländern Hamburg und Brandenburg finanziert. An seinen Standorten in Hamburg und Zeuthen bei Berlin entwickelt, baut und betreibt DESY große Teilchenbeschleuniger und erforscht damit die Struktur der Materie. Die Kombination von Forschung mit Photonen und Teilchenphysik bei DESY ist einmalig in Europa.


Originalveröffentlichung
Analysis of sub-lethal arsenic toxicity to Ceratophyllum demersum: Subcellular distribution of arsenic and inhibition of chlorophyll biosynthesis; Seema Mishra, Matthias Alfeld, Roman Sobotka, Elisa Andresen, Gerald Falkenberg, Hendrik Küpper
„Journal of Experimental Botany”, 2016; DOI: 10.1093/jxb/erw238

Weitere Informationen:

https://www.desy.de/aktuelles/news_suche/index_ger.html?openDirectAnchor=1061&am... - Text und Blidmaterial
http://jxb.oxfordjournals.org/content/early/2016/06/22/jxb.erw238.abstract - Originalstudie

Dr. Thomas Zoufal | idw - Informationsdienst Wissenschaft

Weitere Berichte zu: Arsen Chlorophyll PETRA III Photosynthese Röntgenuntersuchung Zelle Zellkern desy

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Mit Barcodes der Zellentwicklung auf der Spur
17.08.2017 | Deutsches Krebsforschungszentrum

nachricht Magenkrebs: Auch Bakterien können Auslöser sein
17.08.2017 | Charité – Universitätsmedizin Berlin

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Im Focus: Exotische Quantenzustände: Physiker erzeugen erstmals optische „Töpfe" für ein Super-Photon

Physikern der Universität Bonn ist es gelungen, optische Mulden und komplexere Muster zu erzeugen, in die das Licht eines Bose-Einstein-Kondensates fließt. Die Herstellung solch sehr verlustarmer Strukturen für Licht ist eine Voraussetzung für komplexe Schaltkreise für Licht, beispielsweise für die Quanteninformationsverarbeitung einer neuen Computergeneration. Die Wissenschaftler stellen nun ihre Ergebnisse im Fachjournal „Nature Photonics“ vor.

Lichtteilchen (Photonen) kommen als winzige, unteilbare Portionen vor. Viele Tausend dieser Licht-Portionen lassen sich zu einem einzigen Super-Photon...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Einblicke ins menschliche Denken

17.08.2017 | Veranstaltungen

Eröffnung der INC.worX-Erlebniswelt während der Technologie- und Innovationsmanagement-Tagung 2017

16.08.2017 | Veranstaltungen

Sensibilisierungskampagne zu Pilzinfektionen

15.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Scharfe Röntgenblitze aus dem Atomkern

17.08.2017 | Physik Astronomie

Fake News finden und bekämpfen

17.08.2017 | Interdisziplinäre Forschung

Effizienz steigern, Kosten senken!

17.08.2017 | Messenachrichten