Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Röntgenlaser liefert Bauplan für mögliches Mittel gegen Schlafkrankheit

30.11.2012
Mit dem weltstärksten Röntgenlaser haben Forscher eine potenzielle Achillesferse des Erregers der Schlafkrankheit enthüllt.
Die detaillierte Analyse liefert den Bauplan für ein mögliches Mittel gegen den Parasiten Trypanosoma brucei, der mehr als 60 Millionen Menschen vor allem im südlichen Afrika bedroht. Es ist die erste neue biologische Strukturinformation, die mit einem sogenannten Freie-Elektronen-Laser gewonnen wurde.

Mit einem maßgeschneiderten molekularen Stöpsel ließe sich demnach ein lebenswichtiges Enzym des Parasiten blockieren, wie das Team um DESY-Forscher Prof. Henry Chapman vom Center for Free-Electron Laser Science (CFEL), Prof. Christian Betzel von der Universität Hamburg und Dr. Lars Redecke von der gemeinsamen Nachwuchsgruppe "Strukturelle Infektionsbiologie unter Anwendung neuer Strahlungsquellen (SIAS)" der Universitäten Hamburg und Lübeck, im Fachjournal "Science" berichtet. "Dies ist die erste neue biologische Struktur, die an einem Freie-Elektronen-Laser entschlüsselt wurde", betont Chapman.

Kolorierte Elektronenmikroskopaufnahme des Parasiten Trypanosoma brucei (hellblau) im Blut, zusammen mit roten und weißen Blutkörperchen (Erythrozyten, rot, und Lymphozyten, weiß). Die Parasiten werden durch den Biss der Tsetse-Fliege übertragen und leben im Blut, bevor sie das zentrale Nervensystem und das Hirn angreifen, was in der Regel tödlich verläuft.

Bild: Prof. Michael Duszenko, Universität Tübingen


Kombinierte Intensitätskarte aus fast 200 000 Streubildern von in vivo gezüchteten Kristallen des Enzyms Cathepsin B aus dem Erreger der Schlafkrankheit, Trypanosoma brucei. Diese Karte diente dazu, die dreidimensionale molekulare Struktur des Enzyms zu bestimmen.

Bild: Karol Nass, CFEL

Die Wissenschaftler hatten das Enzym Cathepsin B des Parasiten in kristallisierter Form mit den intensiven Röntgenblitzen der Linac Coherent Light Source LCLS am US-Forschungszentrum SLAC in Kalifornien analysiert. "Das Enzym hatte sich in früheren Untersuchungen als vielversprechender Ansatzpunkt für ein Medikament erwiesen", erläutert Dr. Lars Redecke, einer der beiden Hauptautoren der "Science"-Studie. "Das Ausschalten des Enzyms im Parasiten konnte bei Mäusen die Infektion heilen."

Allerdings kommt dasselbe Enzym auch beim Menschen und sogar bei allen Säugetieren vor. Legt man es unspezifisch lahm, kann das auch für den Patienten gravierende Konsequenzen haben. Mit ihrer Röntgenuntersuchung haben die Forscher nun jedoch charakteristische Unterschiede in der molekularen Struktur des Enzyms zwischen Mensch und Parasit gefunden. "Damit eröffnet sich grundsätzlich die Chance, mit einem maßgeschneiderten Molekül gezielt das Enzym des Parasiten zu blockieren, es aber beim Patienten intakt zu lassen", erläutert der andere Hauptautor der "Science"-Studie, Karol Nass, Doktorand an der Hamburg School for Structure and Dynamics in Infection (SDI), die von der Landesexzellenzinitiative (LEXI) gefördert wird. Trotz dieses vielversprechenden Ansatzes sei ein mögliches neues Medikament allerdings noch sehr weit entfernt, betonen die Wissenschaftler.

Die Schlafkrankheit, wissenschaftlich als Humane Afrikanische Trypanosomiasis (HAT) bezeichnet, wird durch den Biss der Tsetse-Fliege übertragen. Die Trypanosomen verschanzen sich im zentralen Nervensystem, und ohne Behandlung verläuft die Infektion normalerweise tödlich. Die Krankheit kommt in 36 afrikanischen Ländern südlich der Sahara vor und gefährdet vor allem die arme Landbevölkerung. In den vergangenen Jahren wurde der Kampf gegen die Krankheit unter Federführung der Weltgesundheitsorganisation WHO deutlich verstärkt, wodurch die Fallzahlen drastisch gesunken sind. Dennoch sind nach wie vor Millionen Menschen gefährdet.

Die Schlafkrankheit wird mit Anti-Parasiten-Medikamenten behandelt, die allerdings ohne genaue Kenntnis der biochemischen Zusammenhänge entwickelt worden und daher weniger zuverlässig und sicher seien als wünschenswert, unterstreichen die Wissenschaftler. Außerdem würden immer mehr Parasiten widerstandsfähig gegen die Mittel. Neue Wirkstoffe, die gezielt die Parasiten töten ohne den Organismus des Patienten zu beeinträchtigen, wären daher von großem Nutzen.

Zur Entschlüsselung der Cathepsin-B-Struktur durchleuchtete das Forscherteam kleine Kristalle aus dem Biomolekül mit der intensiven Röntgenstrahlung. Kristalle streuen Röntgenlicht generell auf charakteristische Weise, und aus den resultierenden Beugungsbildern lässt sich die Struktur des Kristalls und damit in diesem Fall des Enzyms berechnen. Dank der hellen Röntgenblitze konnten die Wissenschaftler die molekulare Struktur des Enzyms mit atomarer Auflösung bestimmen.

Auch wenn diese Art der Röntgenkristallographie von Biomolekülen heute zu den Standardmethoden gehört, gibt es viele Proteine, die im Labor schwer zu kristallisieren sind, wie etwa Cathepsin B. Die Forscher verfolgten daher einen neuartigen Ansatz: Sie ließen Insektenzellen die Enzymkristalle in vivo herstellen. Im Gegensatz zur üblichen Kristallisation, bei der Bakterien das gewünschte Biomolekül herstellen und es nachträglich mit viel Ausschuss im Labor zu möglichst großen Einheiten kristallisiert wird, lieferte nur die In-vivo-Technik, die in den Laboren von Betzel und von Prof. Michael Duszenko an der Universität Tübingen entwickelt wurde, brauchbare Kristalle.

Darüber hinaus hat die In-vivo-Kristallisation in Insektenzellen einen weiteren, entscheidenden Vorteil: Auf diese Weise wurde das Cathepsin B in seiner natürlichen Konfiguration "eingefroren". Das Enzym arbeitet als eine Art molekulare Schere, die andere Proteine zerteilt. Es wird daher im Organismus in einer inaktivierten Form hergestellt, bei der ein kleines Eiweißmolekül, ein sogenanntes Peptid, die Schere blockiert. Erst wenn die Schere gebraucht wird, aktiviert die Zelle das Enzym und löst das Peptid.

"Dank des angekoppelten Peptids konnten wir unter einen bislang unzugänglichen Strukturbereich des Cathepsins schauen", erläutert Betzel. Dort enthüllte die Analyse deutliche Unterschiede der Peptid-Bindungsstellen am Cathepsin B zwischen Parasit und Mensch, die sich für einen maßgeschneiderten künstlichen Hemmstoff nutzen lassen, der gezielt das Parasiten-Enzym blockiert. "Auf diese Weise hat uns die Natur einen grundlegenden Bauplan dafür geliefert, wie ein künstlicher Hemmstoff für das Enzym des Parasiten aussehen könnte." Der nächste Schritt wäre die Herstellung und der Test eines solchen Hemmstoffs im Labor.

Die untersuchten Enzymkristalle waren etwa einen tausendstel Millimeter (einen Mikrometer) dick und im Schnitt zehn Mikrometer lang. Das ist immer noch so klein, dass nur die hellsten Röntgenquellen wie die LCLS ausreichend detaillierte Beugungsbilder für eine Strukturanalyse mit atomarer Auflösung produzieren. Die LCLS gehört zu einer neuen Generation von Forschungslichtquellen. Diese sogenannten Freie-Elektronen-Laser beruhen auf starken Teilchenbeschleunigern, die zunächst Elektronen auf hohe Energien bringen und sie dann durch einen enggesteckten Slalomkurs schicken. In jeder Kurve senden die Elektronen kleine Röntgenblitze aus, die sich zu einem extrem starken Laserpuls verstärken, der dann winzige Strukturen wie Enzyme und andere Biomoleküle entschlüsseln kann. In Hamburg entsteht mit dem Freie-Elektronen-Laser European XFEL, bei dem DESY Hauptgesellschafter ist, zurzeit der beste Röntgenlaser der Welt.

Um die Struktur der Peptid-Bindestelle am Cathepsin B zu bestimmen, mussten die Forscher Hunderttausende Beugungsbilder aufnehmen und nachträglich zusammenfügen, wobei jedes Bild immer nur einen Teil der Struktur liefert. Da die Kristalle durch den Beschuss mit den Röntgenblitzen sofort verdampfen, ließen die Forscher Millionen von Kristallen in einem feinen Wasserstrahl durch den Strahl des Röntgenlasers rieseln. Der Röntgenlaser feuerte 120 Blitze pro Sekunde auf den Strahl, im Schnitt traf jeder elfte einen Kristall. So entstanden insgesamt 293 195 Beugungsbilder, die nur mit einem großen Parallelrechner verarbeitet werden konnten. Die Kombination ergibt zunächst eine dreidimensionale Karte der kompletten Streueigenschaften des Enzyms, aus der sich seine Struktur bis auf 2,1 Ångström genau berechnen ließ (ein Ångström ist ein zehntel Nanometer, das entspricht einem zehnmillionstel Millimeter). "Interessanterweise fällt unsere Entdeckung gerade mit dem hundertsten Jubiläum der Veröffentlichung der berühmten Röntgenbeugungsgleichung durch William Bragg im Jahr 1912 zusammen", betont Chapman.

Dem Forscherteam gehörten Wissenschaftler von DESY, den Universitäten Hamburg, Lübeck, Tübingen, Uppsala und Göteborg sowie der Arizona State University, dem US-Beschleunigerzentrum SLAC, dem Lawrence Livermore National Laboratory (USA), dem Max-Planck-Institut für medizinische Forschung in Heidelberg und der Max Planck Advanced Study Group am Hamburger Center for Free-Electron Laser Science (CFEL) an. Das CFEL ist eine Kooperation von DESY, der Max-Planck-Gesellschaft und der Universität Hamburg. DESY ist ein Forschungszentrum der Helmholtz-Gemeinschaft. Es ist das führende deutsche Beschleunigerzentrum und eines der führenden in der Welt.

Originalveröffentlichung: "Natively inhibited Trypanosoma brucei cathepsin B structure determined using an x-ray laser"; Lars Redecke, Karol Nass et al.; "Science", 2012 (advance online publication); DOI: 10.1126/science.1229663

Dr. Thomas Zoufal | idw
Weitere Informationen:
http://www.desy.de
http://www.desy.de/infos__services/presse/pressemeldungen/2012/pm_291112/index_ger.html

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wie Reize auf dem Weg ins Bewusstsein versickern
22.09.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Lebendiges Gewebe aus dem Drucker
22.09.2017 | Universitätsklinikum Freiburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie