Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Mit RNA-Schnipseln gegen Herzinfarkt

02.05.2012
MicroRNAs spielen bei der Erneuerung der Gefäße eine wichtige Rolle. Wie sich dieses Wissen zur Therapie nach Herzinfarkten, bei der "Schaufensterkrankheit" (paVK) oder Aneurysmen nutzen lässt, beschreiben Frankfurter Biologen in der aktuellen Ausgabe von „Forschung Frankfurt“.

Mindestens 30 Prozent der Gene im menschlichen Körper werden durch winzige Stückchen der Ribonukleinsäure reguliert, die ursprünglich als wertlose „junk-RNA“ galten. Die heute als microRNAs bekannten Molekülketten wurden zuerst 1993 beim Fadenwurm C. elegans entdeckt.

Inzwischen sind beim Menschen mehr als 1500 microRNAs beschrieben worden. Die Arbeitsgruppe von Prof. Stefanie Dimmeler erforscht die Rolle der RNA-Schnipsel bei der Entstehung von Herz- und Gefäß-Erkrankungen.

MicroRNAs entfalten ihre Wirkung, indem sie sich an die messenger RNA (mRNA) heften, die als Blaupause für Proteinketten dient. Ist von dem gewünschten Protein genug entstanden, stoppen microRNAs den Prozess, indem sie die mRNA entweder abbauen oder hemmen. Dieses Prinzip ist bereits seit Langem für eine andere Gruppe von RNAs, die silencing RNAs (siRNAs) bekannt. Sie werden zur Hemmung von spezifischen Genen auch therapeutisch eingesetzt. microRNAs unterscheiden sich von siRNAs jedoch darin, dass sie nicht auf einzelne Zielgene, sondern auf bis zu mehrere Hundert Zielgene gerichtet sind. Auf diese Weise beeinflussen sie regulatorische Netzwerke und haben auch einen Anteil an der Entstehung verschiedener Krankheiten. „Daher ist die Erforschung der microRNAs nicht nur ein neues und sehr aktuelles Thema in der Molekular- und Zellbiologie, sondern auch von großem Interesse für die medizinische Forschung“, erklärt Stefanie Dimmeler, Professorin für Molekulare Kardiologie an der Goethe-Universität und Forscherin im Exzellenzcluster „Cardio-Pulmonary System“.

Erste Hinweise zur Funktion von microRNAs im Herz-Kreislauf-System erhielten Dimmeler und ihre Kollegen, indem sie deren Expression in den Zellen der Blutgefäße und im Herzen bestimmten. In einem zweiten Schritt wiesen sie die Funktion einiger microRNAs nach. Die Forscher des Exzellenzclusters in Bad Nauheim konnten zeigen, dass sich Gefäßschädigungen (atherosklerotische Läsionen), die einen Herzinfarkt häufig voran gehen, durch ein microRNA-Cluster aus zwei miRNAs, miR-143 und miR-145, verhindern lassen. Die schützende Wirkung dieser beiden microRNAs zeigte sich an Versuchstieren, bei denen die Expression durch einen genetischen knock-out unterdrückt worden war. Dies führte zu einer beschleunigten Entstehung der gefährlichen atherosklerotischen Läsionen. „Eine mögliche therapeutische Option bietet die Behandlung mit miR-143 und miR-145, die in Mikrovesikeln verpackt sind“, so Dimmeler. „Das konnte unsere Arbeitsgruppe in Kollaboration mit der Gruppe von Achilleas Frangakis vom Institut für Biophysik der Goethe-Universität nachweisen.“

MicroRNAs spielen auch eine zentrale Rolle für das Gefäßwachstum und die Sauerstoffversorgung nach einer Unterbrechung der Blutzufuhr, etwa durch einen Herzinfarkt. Die microRNA-92a hat beispielsweise einen schädlichen Einfluss, weil sie die Bildung von Blutgefäßen unterdrückt. Daher wurde sie mit spezifischen anti-sense-Inhibitoren blockiert. Erste Untersuchungen in präklinischen Großtierstudien zeigen, dass diese die Herzinfarktgröße reduzieren und die Herzfunktion verbessern. Basierend auf diesen experimentellen Ergebnissen hoffen die Forscher, künftig Patienten zu behandeln, die nach einem Herzinfarkt an Minderdurchblutung leiden. Auch Patienten mit der „Schaufensterkrankheit“ (periphere arterielle Verschlusskrankheit, paVK), die vor allem an einer Minderdurchblutung der Beine leiden, könnten davon profitieren.

Ein weiteres Krankheitsbild, bei dem die Forscher beteiligte microRNAs identifizierten, sind Aneurysmen. Das sind Aussackungen der Blutgefäße, die zur Ruptur neigen und lebensbedrohliche Blutungen verursachen können, insbesondere wenn die Bauchschlagader oder Gehirnarterien betroffen sind. Eine Therapie ist bisher nur durch eine chirurgische Operation möglich. Hier ist eine microRNA-Familie im Spiel, die im Alter hoch reguliert wird. Eine Hemmung der miR-29-Familie verhinderte die Erweiterung der Aorta und verbesserte die Matrixzusammensetzung der Gefäßwand. Diese von Reinier Boon und seinen Frankfurter Kollegen am LOEWE-Zentrum für Zell- und Gentherapie erstmals veröffentlichten Erkenntnisse wurden mittlerweile von mehreren Gruppen in den USA bestätigt.

MicroRNAs spielen jedoch nicht nur eine wichtige Rolle bei der Regulation der Genexpression in den Zellen, sondern werden auch aus den Zellen freigesetzt. Sie können deshalb dazu genutzt werden, über eine einfache Blutprobe erste Hinweise über eine Zellaktivierung oder -schädigung zu erhalten. Bei Herzerkrankungen konnten Forscher des Exzellenzclusters zeigen, dass spezifisch aus dem Herzen freigesetzte microRNAs im Blut von Patienten mit Herzinfarkt, aber nicht bei gesunden Freiwilligen zu messen sind. Weiterführende Studien sollen nun zeigen, ob diese Messungen tatsächlich zur frühen Diagnose von Herz-Kreislauf-Erkrankungen genutzt werden können.

„Forschung Frankfurt“ kostenlos bestellen: ott@pvw.uni-frankfurt.de Im Internet: www.forschung-frankfurt.uni-frankfurt.de

Informationen: Prof. Stefanie Dimmeler, Dr. Reinier Boon, Institut für Kardiovaskuläre Regeneration, Universitätsklinik, Tel. (069) 6301-7440, 069-63017357; dimmeler@em.uni-frankfurt.de; boon@med.uni-frankfurt.de.

Die Goethe-Universität ist eine forschungsstarke Hochschule in der europäischen Finanzmetropole Frankfurt. 1914 von Frankfurter Bürgern gegründet, ist sie heute eine der zehn drittmittelstärksten und größten Universitäten Deutschlands. Am 1. Januar 2008 gewann sie mit der Rückkehr zu ihren historischen Wurzeln als Stiftungsuniversität ein einzigartiges Maß an Eigenständigkeit. Parallel dazu erhält die Universität auch baulich ein neues Gesicht. Rund um das historische Poelzig-Ensemble im Frankfurter Westend entsteht ein neuer Campus, der ästhetische und funktionale Maßstäbe setzt. Die „Science City“ auf dem Riedberg vereint die naturwissenschaftlichen Fachbereiche in unmittelbarer Nachbarschaft zu zwei Max-Planck-Instituten. Mit über 55 Stiftungs- und Stiftungsgastprofessuren nimmt die Goethe-Universität laut Stifterverband eine Führungsrolle ein.

Herausgeber: Der Präsident der Goethe-Universität Frankfurt am Main. Redaktion: Dr. Anne Hardy, Referentin für Wissenschaftskommunikation, Abteilung Marketing und Kommunikation, Senckenberganlage 31, 60325 Frankfurt am Main, Tel: (069) 798-29228, Fax: (069) 798-28530, hardy@pvw.uni-frankfurt.de

Dr. Anne Hardy | idw
Weitere Informationen:
http://www.uni-frankfurt.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Klimakiller Kuh: Methan-Ausstoß von Vieh könnte bis 2050 um über 70 Prozent steigen
27.03.2017 | Senckenberg Forschungsinstitut und Naturmuseen

nachricht Zirkuläre RNA wird in Proteine übersetzt
27.03.2017 | Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Clevere Folien voller Quantenpunkte

27.03.2017 | Materialwissenschaften

In einem Quantenrennen ist jeder Gewinner und Verlierer zugleich

27.03.2017 | Physik Astronomie

Klimakiller Kuh: Methan-Ausstoß von Vieh könnte bis 2050 um über 70 Prozent steigen

27.03.2017 | Biowissenschaften Chemie