Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

RNA macht Lungenkrebszellen mobil

05.02.2013
Das RNA-Molekül MALAT1 ist ein Marker für den Verlauf einer Lungenkrebs-Erkrankung. Heidelberger Wissenschaftler fanden nun heraus, dass MALAT1 in Krebszellen Gene aktiviert, die Metastasen begünstigen. Bei Mäusen reduzierte ein Wirkstoff, der MALAT1 gezielt blockiert, Anzahl und Größe von Metastasen eines Lungentumors.

Der überwiegende Teil – rund 80 Prozent – unseres Erbguts enthält keine Bauanleitung für Proteine, wird aber dennoch in RNA-Moleküle abgeschrieben. Diese so genannten nicht-kodierenden RNAs übernehmen vielfältige Aufgaben in der Zelle. Neben einer gut untersuchten Gruppe kleiner RNAs sind auch langkettig nicht-kodierende Ribonukleinsäuren bekannt, die aus mindestens 200 Bausteinen bestehen.

Die langen nicht-kodierenden RNAs regulieren unter anderem die Zellteilung, das Wachstum oder den Zelltod. Daher war es auch nicht überraschend, dass viele dieser Steuermoleküle mit dem Fortschreiten von Krebserkrankungen in Verbindung stehen. So auch die RNA MALAT1, die bei verschiedenen Formen von Lungenkrebs als Marker für den Verlauf der Erkrankung gilt: „Je mehr MALAT1 die Tumorzellen bilden, desto wahrscheinlicher ist es, dass Metastasen auftreten und die Krankheit sehr ungünstig verläuft“, sagt Dr. Sven Diederichs, der das Molekül im Rahmen seiner Doktorarbeit entdeckt hatte. Diederichs leitet inzwischen eine Nachwuchsgruppe, die sowohl im Deutschen Krebsforschungszentrum als auch am Pathologischen Institut des Universitätsklinikums Heidelberg angesiedelt ist.

In seiner aktuellen Arbeit untersuchte der Wissenschaftler, auf welche Weise MALAT1 tatsächlich in zelluläre Vorgänge eingreift und dadurch die Metastasierung begünstigt. Mit seinem Team hatte er vor kurzem eine Methode entwickelt, um lange nicht-kodierende RNA-Moleküle in der Zelle gezielt auszuschalten. Dazu fügen die Forscher Signalsequenzen ins Erbgut ein, die bewirken, dass die RNA-Moleküle gleich nach ihrer Entstehung wieder abgebaut werden. Anschließend beobachten sie die daraus resultierenden Veränderungen der Zellbiologie.

Dem Team um Diederichs gelang es erstmals, MALAT1 in Lungenkrebszellen in der Kulturschale nahezu vollständig auszuschalten. MALAT1, so entdeckten sie an den veränderten Zellen, reguliert zahlreiche Gene, die an der Metastasierung beteiligt sind. Das bewirkt unter anderem, dass die MALAT1-negativen Tumorzellen in ihrer Beweglichkeit eingeschränkt sind und daher weniger invasiv in umgebendes Gewebe einwandern können. Wurden sie auf Mäuse übertragen, bildeten sie in der Lunge der Tiere deutlich weniger Tumorherde als Krebszellen mit intaktem MALAT1.

Ermutigt durch dieses Ergebnis prüften die Forscher, ob MALAT1 auch im intakten Organismus blockiert und damit die Metastasierung verhindert werden kann. Gemeinsam mit dem US-amerikanischen Unternehmen ISIS Pharmaceuticals entwickelten die Heidelberger Wissenschaftler kleine Nukleinsäure-Schnipsel (Antisense-Oligonukleotide), die von den Zellen aufgenommen werden und RNA-Moleküle gezielt blockieren.

In Mäusen, denen menschliche Lungenkrebszellen injiziert wurden, verzögerten die MALAT1-spezifischen Antisense-Schnipsel die Metastasenbildung: In den Lungen der Tiere fanden sich weniger und kleinere Krebsherde als bei Artgenossen, die den Wirkstoff nicht erhalten hatten.

„Rund zehn Jahre, nachdem wir MALAT1 als prognostischen Marker bei Lungenkrebs entdeckt haben, verstehen wir jetzt, wie diese nicht-kodierende RNA die Metastasierung beeinflusst. Darüber hinaus hat sich die RNA als mögliches Zielmolekül für eine innovative Therapie mit Antisense-RNAs herausgestellt.“ Diesen vielversprechenden Ansatz verfolgen Sven Diederichs und sein Team nun intensiv weiter, um Lungenkrebs künftig vielleicht an seiner Ausbreitung hindern zu können.

Tony Gutschner, Monika Hämmerle, Moritz Eißmann, Jeff Hsu, Youngsoo Kim, Gene Hung, Alexey Revenko, Gayatri Arun, Marion Stentrup, Matthias Groß, Martin Zörnig, A. Robert MacLeod, David L. Spector, Sven Diederichs: The non-coding RNA MALAT1 is a critical regulator of the metastasis phenotype of lung cancer cells. Cancer Research 2013, DOI: 10.1158/0008-5472.CAN-12-2850

Das Deutsche Krebsforschungszentrum (DKFZ) ist mit mehr als 2.500 Mitarbeiterinnen und Mitarbeitern die größte biomedizinische Forschungseinrichtung in Deutschland. Über 1000 Wissenschaftlerinnen und Wissenschaftler erforschen im DKFZ, wie Krebs entsteht, erfassen Krebsrisikofaktoren und suchen nach neuen Strategien, die verhindern, dass Menschen an Krebs erkranken. Sie entwickeln neue Methoden, mit denen Tumoren präziser diagnostiziert und Krebspatienten erfolgreicher behandelt werden können. Die Mitarbeiterinnen und Mitarbeiter des Krebsinformationsdienstes (KID) klären Betroffene, Angehörige und interessierte Bürger über die Volkskrankheit Krebs auf. Gemeinsam mit dem Universitätsklinikum Heidelberg hat das DKFZ das Nationale Centrum für Tumorerkrankungen (NCT) Heidelberg eingerichtet, in dem vielversprechende Ansätze aus der Krebsforschung in die Klinik übertragen werden. Im Deutschen Konsortium für Translationale Krebsforschung (DKTK), einem der sechs Deutschen Zentren für Gesundheitsforschung, unterhält das DKFZ Translationszentren an sieben universitären Partnerstandorten. Die Verbindung von exzellenter Hochschulmedizin mit der hochkarätigen Forschung eines Helmholtz-Zentrums ist ein wichtiger Beitrag, um die Chancen von Krebspatienten zu verbessern. Das DKFZ wird zu 90 Prozent vom Bundesministerium für Bildung und Forschung und zu 10 Prozent vom Land Baden-Württemberg finanziert und ist Mitglied in der Helmholtz-Gemeinschaft deutscher Forschungszentren.

Diese Pressemitteilung ist abrufbar unter www.dkfz.de/pressemitteilungen

Dr. Stefanie Seltmann
Leiterin Presse- und Öffentlichkeitsarbeit
Deutsches Krebsforschungszentrum
Im Neuenheimer Feld 280
D-69120 Heidelberg
T: +49 6221 42 2854
F: +49 6221 42 2968
presse@dkfz.de
Dr. Sibylle Kohlstädt
Presse- und Öffentlichkeitsarbeit
Deutsches Krebsforschungszentrum
Im Neuenheimer Feld 280
D-69120 Heidelberg
T: +49 6221 42 2843
F: +49 6221 42 2968
presse@dkfz.de

Dr. Stefanie Seltmann | idw
Weitere Informationen:
http://www.dkfz.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Was nach der Befruchtung im Zellkern passiert
06.12.2016 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Forscher vergleichen Biodiversitätstrends mit dem Aktienmarkt
06.12.2016 | Helmholtz-Zentrum für Umweltforschung - UFZ

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Wie sich Zellen gegen Salmonellen verteidigen

Bioinformatiker der Goethe-Universität haben das erste mathematische Modell für einen zentralen Verteidigungsmechanismus der Zelle gegen das Bakterium Salmonella entwickelt. Sie können ihren experimentell arbeitenden Kollegen damit wertvolle Anregungen zur Aufklärung der beteiligten Signalwege geben.

Jedes Jahr sind Salmonellen weltweit für Millionen von Infektionen und tausende Todesfälle verantwortlich. Die Körperzellen können sich aber gegen die...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Was nach der Befruchtung im Zellkern passiert

06.12.2016 | Biowissenschaften Chemie

Tempo-Daten für das „Navi“ im Kopf

06.12.2016 | Medizin Gesundheit

Patienten-Monitoring in der eigenen Wohnung − Sensorenanzug für Schlaganfallpatienten

06.12.2016 | Medizintechnik