Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ringsystem mit Charme

03.05.2016

Eine saubere, klimafreundliche Energiequelle, die nahezu unerschöpflich ist: Das verspricht die künstliche Photosynthese. Chemikern der Universität Würzburg ist es jetzt gelungen, diesem Ziel einen Schritt näher zu kommen. In der Fachzeitschrift Nature Chemistry stellen sie ihre Ergebnisse vor.

Die Natur macht es vor: Im Rahmen der Photosynthese erzeugen Pflanzen mit Hilfe von Licht aus Kohlenstoffdioxid (CO2) und Wasser (H2O) energiereiche organische Verbindungen, meist in Form von Kohlehydraten, und Sauerstoff (O2).


Drei Rutheniumatome, die über speziell geformte organische Verbindungen miteinander verbunden sind, sorgen dafür, dass das Photosystem effizienter arbeitet als seine Vorgänger.

Grafik: Valentin Kunz & Marcus Schulze

Wenn es gelingt, diesen Prozess in einem großen Maßstab künstlich nachzuahmen, wären etliche Probleme der Menschheit vermutlich gelöst. Die künstliche Photosynthese könnte die Erde mit Brennstoffen hoher Energiedichte wie Wasserstoff, Methan oder Methanol versorgen und – nebenbei – den Kohlendioxid-Gehalt in der Atmosphäre verringern und somit den Klimawandel bremsen.

Die Entwicklung der dafür notwendigen effizienten Katalysatoren und der dazugehörigen Farbstoffe bildet einen Schwerpunkt der Forschung am Lehrstuhl von Professor Frank Würthner am Institut für Organische Chemie der Universität Würzburg.

Dort konnten zwei von Prof. Würthners Doktoranden, Marcus Schulze und Valentin Kunz, jetzt einen Teilerfolg auf dem Weg dorthin vermelden. Über ihre Ergebnisse berichten sie in der aktuellen Ausgabe der Fachzeitschrift Nature Chemistry.

Verbesserungen an einem künstlichen Photosystem

„In der Natur ist das sogenannte Photosystem II zentraler Bestandteil des Photosynthese-Prozesses“, erklärt Marcus Schulze. Dabei handelt es sich um einen Proteinkomplex mit einem katalytisch aktiven Zentrum bestehend aus mehreren Metallatomen. Sie müssen zusammenarbeiten, damit Wasser in seine beiden elementaren Bestandteile gespalten werden kann, was in zwei räumlich getrennt ablaufenden elektrochemischen Halbreaktionen stattfindet. Diese beiden Reaktionen im Labor nachzubilden, ist heute schon möglich.

Allerdings: „Die Wasserstoffgewinnung gelingt bereits gut. Nur die Wasseroxidation zu Sauerstoff muss noch beschleunigt werden, damit die Balance der einzelnen Halbreaktionen zueinander passt“, sagt Schulze.

Für die künstliche Photosynthese setzt die Wissenschaft noch häufig auf das seltene Edelmetall Ruthenium als Katalysator. Das künstliche System arbeitet im Prinzip ähnlich gut wie sein natürliches Vorbild. Der Katalysator neigt allerdings dazu, sich relativ schnell selbst zu zersetzen. An diesem Punkt haben die beiden Würzburger Chemiker angesetzt: „Wir haben die Ruthenium-Atome in spezielle supramolekulare Strukturen eingebaut, welche die Zerstörung bremsen und eine Art ‚Selbstheilungsprozess‘ ermöglichen“, erklärt Valentin Kunz.

Zwei Jahre Arbeit im Labor

Wie einen Ring kann man sich diese Struktur vorstellen, in dem drei Rutheniumatome über drei sogenannte Liganden – speziell geformte organische Verbindungen – miteinander verbunden sind. Maßgeschneiderte Bindungsstellen garantieren, dass Metallzentren und Liganden zueinander passen wie ein Schlüssel zum Schloss. Was sich vergleichsweise einfach anhört, war in Wirklichkeit eine mehr als zwei Jahre andauernde Tüftelarbeit im Labor. „Man dreht nach und nach an verschiedenen Schrauben und schaut, was passiert“, beschreibt Kunz diese Vorgehensweise.

Das Ergebnis ist ein „zyklisches System, das sich von selbst aus definierten Einzelbausteinen zusammensetzt“, wie die beiden Chemiker erklären. Sein einfacher Aufbau, seine einfache Herstellung und die Tatsache, dass sich die Bausteine ohne großen technischen Aufwand von alleine zur gewünschten Struktur aneinander reihen, mache „aus synthetischer Sicht“ dessen Charme aus. Diese Eigenschaft mache es für potenzielle Anwendungen besser geeignet als die bisher verwendeten Systeme.

Die nächsten Schritte

Dass der von ihnen entwickelte Wasseroxidationskatalysator zusätzlich eine höhere Effizienz aufweist, freut die Chemiker – auch wenn sie dafür noch keine eindeutige Erklärung haben. Die können möglicherweise die Experten für theoretische Chemie in absehbarer Zeit liefern, mit denen Frank Würthners Lehrstuhl eng zusammenarbeitet. Roland Mitrić, Inhaber des Lehrstuhls für Theoretische Chemie an der Universität Würzburg, und dessen Mitarbeiterin Merle Röhr suchen mit ihren Formeln und Algorithmen jedenfalls schon nach einer Antwort auf diese Frage.

Auch wenn das System der beiden Nachwuchswissenschaftler besser als seine Vorgänger ist: „Von der Marktreife sind wir noch weit entfernt“, erklärt Marcus Schulze. Und: „Was wir machen, ist Grundlagenforschung“, ergänzt Valentin Kunz. Dabei stehen die nächsten Schritte schon fest: Zum einen wollen die Chemiker weitere Veränderungen an der Struktur ihres Katalysators und deren Auswirkungen auf die Funktion untersuchen. Zum anderen wollen sie es mit Farbstoffen verbinden, damit die Reaktion photokatalytisch – also mit Hilfe von Licht – abläuft.

Das Verbundprojekt Soltech

Die Arbeit von Marcus Schulze und Valentin Kunz lief im Rahmen des bayernweiten Verbundprojekts Soltech (Solar Technologies Go Hybrid). 2012 gestartet, fördert der Freistaat Bayern damit die Erforschung neuer Konzepte zur Umwandlung von Sonnenenergie in Strom und nichtfossile Brennstoffe. Daran beteiligt sind sogenannte Key Labs an folgenden Universitäten: Universität Bayreuth, Universität Erlangen-Nürnberg, LMU München, TU München und Universität Würzburg.

Das Würzburger Key Lab ist am Zentrum für Nanosystemchemie angesiedelt. Dieses ist 2010 auf Initiative von Professor Frank Würthner entstanden. Seine Forschungsgruppe beschäftigt sich zum einen damit, kleine organische Moleküle gezielt zu größeren Verbänden zu arrangieren, die dann Sonnenlicht absorbieren und an Elektroden transportieren können, wo eine Umwandlung in elektrischen Strom erfolgt. Die Entwicklung künstlicher Chloroplasten, die ähnlich wie in einer pflanzlichen Zelle Lichtenergie zur Erzeugung von Brennstoffen nutzen, ist ein weiteres Ziel des Würzburger Key Labs.

Weitere Würzburger Beteiligte an dem Verbundprojekt sind die Arbeitsgruppen der Professoren Tobias Brixner, Christoph Lambert, Florian Beuerle, Roland Mitrić und Todd Marder aus der Chemie sowie der Teams von Vladimir Dyakonov und Jens Pflaum in der Physik.

A supramolecular ruthenium macrocycle with high catalytic activity for water oxidation that mechanistically mimics photosystem II; Marcus Schulze, Valentin Kunz, Peter D. Frischmann and Frank Würthner; Nature Chemistry, DOI: 10.1038/NCHEM.2503

Kontakt

Prof. Dr. Frank Würthner, Institut für Organische Chemie der Universität Würzburg, T: (0931) 31-85340, wuerthner@chemie.uni-wuerzburg.de

Weitere Informationen:

http://www.nanosystems-chemistry.uni-wuerzburg.de/home/ Zentrum für Nanosystemchemie
http://www.soltech-go-hybrid.de/ Verbundprojekt Soltech

Gunnar Bartsch | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Basis für neue medikamentöse Therapie bei Demenz
27.07.2017 | Medizinische Hochschule Hannover

nachricht Biochemiker entschlüsseln Zusammenspiel von Enzym-Domänen während der Katalyse
27.07.2017 | Westfälische Wilhelms-Universität Münster

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Physiker designen ultrascharfe Pulse

Quantenphysiker um Oriol Romero-Isart haben einen einfachen Aufbau entworfen, mit dem theoretisch beliebig stark fokussierte elektromagnetische Felder erzeugt werden können. Anwendung finden könnte das neue Verfahren zum Beispiel in der Mikroskopie oder für besonders empfindliche Sensoren.

Mikrowellen, Wärmestrahlung, Licht und Röntgenstrahlung sind Beispiele für elektromagnetische Wellen. Für viele Anwendungen ist es notwendig, diese Strahlung...

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Navigationssystem der Hirnzellen entschlüsselt

Das menschliche Gehirn besteht aus etwa hundert Milliarden Nervenzellen. Informationen zwischen ihnen werden über ein komplexes Netzwerk aus Nervenfasern übermittelt. Verdrahtet werden die meisten dieser Verbindungen vor der Geburt nach einem genetischen Bauplan, also ohne dass äußere Einflüsse eine Rolle spielen. Mehr darüber, wie das Navigationssystem funktioniert, das die Axone beim Wachstum leitet, haben jetzt Forscher des Karlsruher Instituts für Technologie (KIT) herausgefunden. Das berichten sie im Fachmagazin eLife.

Die Gesamtlänge des Nervenfasernetzes im Gehirn beträgt etwa 500.000 Kilometer, mehr als die Entfernung zwischen Erde und Mond. Damit es beim Verdrahten der...

Im Focus: Kohlenstoff-Nanoröhrchen verwandeln Strom in leuchtende Quasiteilchen

Starke Licht-Materie-Kopplung in diesen halbleitenden Röhrchen könnte zu elektrisch gepumpten Lasern führen

Auch durch Anregung mit Strom ist die Erzeugung von leuchtenden Quasiteilchen aus Licht und Materie in halbleitenden Kohlenstoff-Nanoröhrchen möglich....

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

10. Uelzener Forum: Demografischer Wandel und Digitalisierung

26.07.2017 | Veranstaltungen

Clash of Realities 2017: Anmeldung jetzt möglich. Internationale Konferenz an der TH Köln

26.07.2017 | Veranstaltungen

2. Spitzentreffen »Industrie 4.0 live«

25.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Basis für neue medikamentöse Therapie bei Demenz

27.07.2017 | Biowissenschaften Chemie

Aus Potenzial Erfolge machen: 30 Rittaler schließen Nachqualifizierung erfolgreich ab

27.07.2017 | Unternehmensmeldung

Biochemiker entschlüsseln Zusammenspiel von Enzym-Domänen während der Katalyse

27.07.2017 | Biowissenschaften Chemie