Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Riesenschritt in Miniwelt: UZH-Forscherin misst elektrische Ladung von Nano-Partikeln

30.07.2012
Ein Millionstel Millimeter klein sind Nano-Teilchen, für das menschliche Auge lange nicht mehr sichtbar. Es sei denn, sie liegen unter dem Mikroskop von Prof. Madhavi Krishnan, Biophysikerin an der Universität Zürich.
Die Wissenschaftlerin hat eine neue Methode entwickelt, mit der sie nicht nur messen kann, wie gross die Partikel sind, sondern welche elektrostatische Ladung sie haben. Bisher war es nicht möglich, die Ladung der Teilchen direkt zu bestimmen. Diese bislang weltweit einmalige Methode ist bei der Herstellung von Arzneien genauso relevant wie für die Grundlagenforschung.

Um die einzelnen Teilchen einer Lösung beobachten zu können, locken Prof. Madhavi Krishnan und ihre Mitarbeiter jedes von ihnen in eine «elektrostatische Falle». Das funktioniert so: Die Forscher erzeugen zwischen zwei winzigen Glasplatten, die Chip-Grösse haben, tausende von runden Energielöchern. Der Trick ist, dass diese Löcher nur schwach elektrostatisch geladen sind. Geben die Wissenschaftler nun einen Tropfen Lösung auf die Plättchen, fällt jedes Teilchen in ein Energieloch und bleibt dort gefangen. Doch es ruht nicht still in seiner Falle, sondern wird ständig von den Molekülen in der Lösung angestupst. Dadurch bewegt es sich kreisförmig. «Diese Bewegungen messen wir und können daran die Ladung jedes einzelnen Teilchens bestimmen», erklärt Prof. Madhavi Krishnan.

Querschnitt durch zwei Glasplatten in Chip-Grösse, in dem ein Nano-Partikelchen in einem Energieloch, in der Fachsprache Potentialtopf, gefangen ist. Die farbigen Felder zeigen die unterschiedlichen Ladungen im elektrostatischen Feld. Dabei ist der rote Bereich sehr niedrig, der blaue Rand hingegen stark geladen.
Bild: UZH

Denn einfach gesagt, ziehen die Partikel mit einer nur geringen Ladung in ihren Fallen grosse Kreise, diejenigen mit einer hohen Ladung nur kleine. So wie einen leichter Ball weit fliegt, ein schwerer hingegen nicht. Ähnlich bestimmte US-Physiker Robert A. Millikan vor 100 Jahren in seinem Öltropf-Experiment, wie schnell sich elektrisch geladene Öltropfen bewegen. 1923 erhielt er den Nobelpreis für Physik. «Doch er untersuchte die Tropfen in einem Vakuum», erläutert die Biophysikerin. «Wir dagegen untersuchen Nano-Teilchen in einer Lösung, die selbst die Eigenschaften der Partikel beeinflusst.»

Elektrostatische Ladung von Nano-Arzneipaketen

Für alle Lösungen, die in der Industrie hergestellt werden, ist die elektrische Ladung der enthaltenen Nano-Partikel ebenfalls entscheidend, denn erst sie ermöglicht, dass eine flüssige Lösung so bleibt wie sie ist und nicht verklumpt. «Mit unserer neuen Methode erhalten wir ein Bild der ganzen Suspension mit allen darin enthaltenen Teilchen», betont Prof. Madhavi Krishnan. Eine Suspension ist eine Flüssigkeit, in der sich kleinste Partikel oder Tröpfchen fein verteilen, wie zum Beispiel in Milch, Blut, vielen Farben, Kosmetika, Impfstoffen und unzählige Arzneien. «Die Ladung der Teilchen spielt darin eine grosse Rolle», sagt die Zürcher Wissenschaftlerin.

Ein Beispiel ist die Herstellung von Medikamenten, die über «Drug-Delivery-Systeme» über einen längeren Zeitraum hinweg gezielt und genau dosiert verabreicht werden sollen. Dabei fungieren Nano-Partikel als «Pakete», die die Arzneien dorthin bringen, wo sie wirken sollen. Entscheidend aber, dass sie Gewebe und Zellmembranen im Körper ungehindert passieren und damit überhaupt erst wirken können, ist sehr oft ihre elektrostatische Ladung. «Deswegen ist es so wichtig, ihre Ladung messen zu können. Bislang wurden meist nur ungenaue Resultate erzeugt,» so die Forscherin.

«Mit der neuen Methode können wir sogar in Echtzeit messen, wenn ein einzelnes Teilchen seine Ladung ändert», ergänzt Prof. Madhavi Krishnan. «Das ist besonders für die Grundlagenforschung spannend und noch nie zuvor möglich gewesen.» Denn Ladungsänderungen spielen bei allen Reaktionen im Körper eine Rolle, sei es von Proteinen, grossen Molekülen wie die DNA-Doppelhelix, in der die Erbanlagen codiert sind, oder den Zellorganellen. «Wir untersuchen, wie die Materie im Millionstel Millimeterbereich funktioniert.»

Literatur:
Mojarad, N, and Krishnan, M., Measuring the size and charge of single nanoscale
objects in solution using an electrostatic fluidic trap. Nature Nanotechnology (2012)
http://www.nature.com/nnano/journal/vaop/ncurrent/full/nnano.2012.99.html, doi:10.1038/nnano.2012.99

Kontakt:
Prof. Dr. Madhavi Krishnan
Universität Zürich
Physikalisch-chemisches Institut
Phone: +41 44 635 44 65
e-mail: madhavi.krishnan@ uzh.ch

Nathalie Huber | Universität Zürich
Weitere Informationen:
http://www.uzh.ch
http://www.nature.com/nnano/journal/vaop/ncurrent/full/nnano.2012.99.html

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Mainzer Physiker gewinnen neue Erkenntnisse über Nanosysteme mit kugelförmigen Einschränkungen
27.06.2017 | Johannes Gutenberg-Universität Mainz

nachricht Glykane als Biomarker für Krebs?
27.06.2017 | Gesellschaft Deutscher Chemiker e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorbild Delfinhaut: Elastisches Material vermindert Reibungswiderstand bei Schiffen

Für eine elegante und ökonomische Fortbewegung im Wasser geben Delfine den Wissenschaftlern ein exzellentes Vorbild. Die flinken Säuger erzielen erstaunliche Schwimmleistungen, deren Ursachen einerseits in der Körperform und andererseits in den elastischen Eigenschaften ihrer Haut zu finden sind. Letzteres Phänomen ist bereits seit Mitte des vorigen Jahrhunderts bekannt, konnte aber bislang nicht erfolgreich auf technische Anwendungen übertragen werden. Experten des Fraunhofer IFAM und der HSVA GmbH haben nun gemeinsam mit zwei weiteren Forschungspartnern eine Oberflächenbeschichtung entwickelt, die ähnlich wie die Delfinhaut den Strömungswiderstand im Wasser messbar verringert.

Delfine haben eine glatte Haut mit einer darunter liegenden dicken, nachgiebigen Speckschicht. Diese speziellen Hauteigenschaften führen zu einer signifikanten...

Im Focus: Kaltes Wasser: Und es bewegt sich doch!

Bei minus 150 Grad Celsius flüssiges Wasser beobachten, das beherrschen Chemiker der Universität Innsbruck. Nun haben sie gemeinsam mit Forschern in Schweden und Deutschland experimentell nachgewiesen, dass zwei unterschiedliche Formen von Wasser existieren, die sich in Struktur und Dichte stark unterscheiden.

Die Wissenschaft sucht seit langem nach dem Grund, warum ausgerechnet Wasser das Molekül des Lebens ist. Mit ausgefeilten Techniken gelingt es Forschern am...

Im Focus: Hyperspektrale Bildgebung zur 100%-Inspektion von Oberflächen und Schichten

„Mehr sehen, als das Auge erlaubt“, das ist ein Anspruch, dem die Hyperspektrale Bildgebung (HSI) gerecht wird. Die neue Kameratechnologie ermöglicht, Licht nicht nur ortsaufgelöst, sondern simultan auch spektral aufgelöst aufzuzeichnen. Das bedeutet, dass zur Informationsgewinnung nicht nur herkömmlich drei spektrale Bänder (RGB), sondern bis zu eintausend genutzt werden.

Das Fraunhofer IWS Dresden entwickelt eine integrierte HSI-Lösung, die das Potenzial der HSI-Technologie in zuverlässige Hard- und Software überführt und für...

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Internationale Fachkonferenz IEEE ICDCM - Lokale Gleichstromnetze bereichern die Energieversorgung

27.06.2017 | Veranstaltungen

Internationale Konferenz zu aktuellen Fragen der Stammzellforschung

27.06.2017 | Veranstaltungen

Fraunhofer FKIE ist Gastgeber für internationale Experten Digitaler Mensch-Modelle

27.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Mainzer Physiker gewinnen neue Erkenntnisse über Nanosysteme mit kugelförmigen Einschränkungen

27.06.2017 | Biowissenschaften Chemie

Wave Trophy 2017: Doppelsieg für die beiden Teams von Phoenix Contact

27.06.2017 | Unternehmensmeldung

Warnsystem KATWARN startet international vernetzten Betrieb

27.06.2017 | Informationstechnologie