Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Riesenschritt in Miniwelt: UZH-Forscherin misst elektrische Ladung von Nano-Partikeln

30.07.2012
Ein Millionstel Millimeter klein sind Nano-Teilchen, für das menschliche Auge lange nicht mehr sichtbar. Es sei denn, sie liegen unter dem Mikroskop von Prof. Madhavi Krishnan, Biophysikerin an der Universität Zürich.
Die Wissenschaftlerin hat eine neue Methode entwickelt, mit der sie nicht nur messen kann, wie gross die Partikel sind, sondern welche elektrostatische Ladung sie haben. Bisher war es nicht möglich, die Ladung der Teilchen direkt zu bestimmen. Diese bislang weltweit einmalige Methode ist bei der Herstellung von Arzneien genauso relevant wie für die Grundlagenforschung.

Um die einzelnen Teilchen einer Lösung beobachten zu können, locken Prof. Madhavi Krishnan und ihre Mitarbeiter jedes von ihnen in eine «elektrostatische Falle». Das funktioniert so: Die Forscher erzeugen zwischen zwei winzigen Glasplatten, die Chip-Grösse haben, tausende von runden Energielöchern. Der Trick ist, dass diese Löcher nur schwach elektrostatisch geladen sind. Geben die Wissenschaftler nun einen Tropfen Lösung auf die Plättchen, fällt jedes Teilchen in ein Energieloch und bleibt dort gefangen. Doch es ruht nicht still in seiner Falle, sondern wird ständig von den Molekülen in der Lösung angestupst. Dadurch bewegt es sich kreisförmig. «Diese Bewegungen messen wir und können daran die Ladung jedes einzelnen Teilchens bestimmen», erklärt Prof. Madhavi Krishnan.

Querschnitt durch zwei Glasplatten in Chip-Grösse, in dem ein Nano-Partikelchen in einem Energieloch, in der Fachsprache Potentialtopf, gefangen ist. Die farbigen Felder zeigen die unterschiedlichen Ladungen im elektrostatischen Feld. Dabei ist der rote Bereich sehr niedrig, der blaue Rand hingegen stark geladen.
Bild: UZH

Denn einfach gesagt, ziehen die Partikel mit einer nur geringen Ladung in ihren Fallen grosse Kreise, diejenigen mit einer hohen Ladung nur kleine. So wie einen leichter Ball weit fliegt, ein schwerer hingegen nicht. Ähnlich bestimmte US-Physiker Robert A. Millikan vor 100 Jahren in seinem Öltropf-Experiment, wie schnell sich elektrisch geladene Öltropfen bewegen. 1923 erhielt er den Nobelpreis für Physik. «Doch er untersuchte die Tropfen in einem Vakuum», erläutert die Biophysikerin. «Wir dagegen untersuchen Nano-Teilchen in einer Lösung, die selbst die Eigenschaften der Partikel beeinflusst.»

Elektrostatische Ladung von Nano-Arzneipaketen

Für alle Lösungen, die in der Industrie hergestellt werden, ist die elektrische Ladung der enthaltenen Nano-Partikel ebenfalls entscheidend, denn erst sie ermöglicht, dass eine flüssige Lösung so bleibt wie sie ist und nicht verklumpt. «Mit unserer neuen Methode erhalten wir ein Bild der ganzen Suspension mit allen darin enthaltenen Teilchen», betont Prof. Madhavi Krishnan. Eine Suspension ist eine Flüssigkeit, in der sich kleinste Partikel oder Tröpfchen fein verteilen, wie zum Beispiel in Milch, Blut, vielen Farben, Kosmetika, Impfstoffen und unzählige Arzneien. «Die Ladung der Teilchen spielt darin eine grosse Rolle», sagt die Zürcher Wissenschaftlerin.

Ein Beispiel ist die Herstellung von Medikamenten, die über «Drug-Delivery-Systeme» über einen längeren Zeitraum hinweg gezielt und genau dosiert verabreicht werden sollen. Dabei fungieren Nano-Partikel als «Pakete», die die Arzneien dorthin bringen, wo sie wirken sollen. Entscheidend aber, dass sie Gewebe und Zellmembranen im Körper ungehindert passieren und damit überhaupt erst wirken können, ist sehr oft ihre elektrostatische Ladung. «Deswegen ist es so wichtig, ihre Ladung messen zu können. Bislang wurden meist nur ungenaue Resultate erzeugt,» so die Forscherin.

«Mit der neuen Methode können wir sogar in Echtzeit messen, wenn ein einzelnes Teilchen seine Ladung ändert», ergänzt Prof. Madhavi Krishnan. «Das ist besonders für die Grundlagenforschung spannend und noch nie zuvor möglich gewesen.» Denn Ladungsänderungen spielen bei allen Reaktionen im Körper eine Rolle, sei es von Proteinen, grossen Molekülen wie die DNA-Doppelhelix, in der die Erbanlagen codiert sind, oder den Zellorganellen. «Wir untersuchen, wie die Materie im Millionstel Millimeterbereich funktioniert.»

Literatur:
Mojarad, N, and Krishnan, M., Measuring the size and charge of single nanoscale
objects in solution using an electrostatic fluidic trap. Nature Nanotechnology (2012)
http://www.nature.com/nnano/journal/vaop/ncurrent/full/nnano.2012.99.html, doi:10.1038/nnano.2012.99

Kontakt:
Prof. Dr. Madhavi Krishnan
Universität Zürich
Physikalisch-chemisches Institut
Phone: +41 44 635 44 65
e-mail: madhavi.krishnan@ uzh.ch

Nathalie Huber | Universität Zürich
Weitere Informationen:
http://www.uzh.ch
http://www.nature.com/nnano/journal/vaop/ncurrent/full/nnano.2012.99.html

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Der Buche in die Gene schauen - Vollständiges Genom der Rotbuche entschlüsselt
11.12.2017 | Senckenberg Forschungsinstitut und Naturmuseen

nachricht Mit den Augen der Biene: Zoologe der Uni Graz entwickelt Verfahren zur Verbesserung dunkler Bilder
11.12.2017 | Karl-Franzens-Universität Graz

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neue Einblicke in die Materie: Hochdruckforschung in Kombination mit NMR-Spektroskopie

Forschern der Universität Bayreuth und des Karlsruhe Institute of Technology (KIT) ist es erstmals gelungen, die magnetische Kernresonanzspektroskopie (NMR) in Experimenten anzuwenden, bei denen Materialproben unter sehr hohen Drücken – ähnlich denen im unteren Erdmantel – analysiert werden. Das in der Zeitschrift Science Advances vorgestellte Verfahren verspricht neue Erkenntnisse über Elementarteilchen, die sich unter hohen Drücken oft anders verhalten als unter Normalbedingungen. Es wird voraussichtlich technologische Innovationen fördern, aber auch neue Einblicke in das Erdinnere und die Erdgeschichte, insbesondere die Bedingungen für die Entstehung von Leben, ermöglichen.

Diamanten setzen Materie unter Hochdruck

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Stabile Quantenbits

Physiker aus Konstanz, Princeton und Maryland schaffen ein stabiles Quantengatter als Grundelement für den Quantencomputer

Meilenstein auf dem Weg zum Quantencomputer: Wissenschaftler der Universität Konstanz, der Princeton University sowie der University of Maryland entwickeln ein...

Im Focus: Realer Versuch statt virtuellem Experiment: Erfolgreiche Prüfung von Nanodrähten

Mit neuartigen Experimenten enträtseln Forscher des Helmholtz-Zentrums Geesthacht und der Technischen Universität Hamburg, warum winzige Metallstrukturen extrem fest sind

Ultraleichte und zugleich extrem feste Werkstoffe – poröse Nanomaterialien aus Metall versprechen hochinteressante Anwendungen unter anderem für künftige...

Im Focus: Geburtshelfer und Wegweiser für Photonen

Gezielt Photonen erzeugen und ihren Weg kontrollieren: Das sollte mit einem neuen Design gelingen, das Würzburger Physiker für optische Antennen erarbeitet haben.

Atome und Moleküle können dazu gebracht werden, Lichtteilchen (Photonen) auszusenden. Dieser Vorgang verläuft aber ohne äußeren Eingriff ineffizient und...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Innovative Strategien zur Bekämpfung von parasitären Würmern

08.12.2017 | Veranstaltungen

Hohe Heilungschancen bei Lymphomen im Kindesalter

07.12.2017 | Veranstaltungen

Der Roboter im Pflegeheim – bald Wirklichkeit?

05.12.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Goldmedaille für die praktischen Ergebnisse der Forschungsarbeit bei Nutricard

11.12.2017 | Unternehmensmeldung

Nachwuchs knackt Nüsse - Azubis der Friedhelm Loh Group für Projekte prämiert

11.12.2017 | Unternehmensmeldung

Mit 3D-Zellkulturen gegen Krebsresistenzen

11.12.2017 | Medizin Gesundheit