Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Riechkolben als Außenstelle des Immunsystems - das Riechhirn wehrt eigenständig Viren ab

04.03.2015

Unser Gehirn ist einer der am besten geschützten Bereiche unseres Körpers. Unter anderem sorgt die Blut-Hirn-Schranke dafür, dass nur ausgewählte Stoffe aus unserem Blutkreislauf in das zentrale Nervensystem übergehen können und schirmt unser Gehirn vor Krankheitserregern, Gift- und Botenstoffen ab.

Gelingt es unerwünschten Besuchern doch, diese Schranke zu überwinden, ist die Folge eine Gehirnentzündung - eine sogenannte Enzephalitis. Eine Enzephalitis tritt nur selten auf, kann dann aber dramatische Folgen haben. Oft wird sie durch Viren hervorgerufen.


Dr. Claudia Detje

Nur wie gelingt es diesen Erregern, die Blut-Hirn-Schranke zu überwinden und vor allem: Wie geht unser Immunsystem in dem abgeschotteten Bereich "Gehirn" gegen Krankheitserreger vor? Denn auch für die meisten Immunzellen, die in unserem Kreislauf patrouillieren, ist das Gehirn eine Sperrzone.

Wissenschaftler vom Institut für Experimentelle Infektionsforschung am TWINCORE haben den Weg des Vesikuläre Stomatitis Virus (VSV) und die Abwehrstrategie des Gehirns erforscht - und dabei entdeckt, dass Gehirnzellen Multitalente sind, die bei einem Virenangriff schnell die Rolle wechseln und den Signalstoff Interferon-beta (IFN-beta) produzieren. IFN-beta ist ein Protein, das die Ausbreitung der Viren schnell bremst und weitere Reaktionen des Immunsystems einleitet. Es ist der erste und meist auch entscheidende Abwehrmechanismus gegen Viren.

"VSV ist ein weniger gefährlicher Verwandter des Tollwut-Virus und kann ebenfalls das zentrale Nervensystem infizieren. Damit können wir gut erforschen, was bei einer Virusinfektion im Gehirn geschieht", sagt Claudia Detje, Wissenschaftlerin am Institut für Experimentelle Infektionsforschung. Diese Viren sind besonders geschickt darin, den Weg ins Gehirn zu finden und bei VSV ist für eine effiziente Abwehr besonders die Bildung von IFN-beta entscheidend.

"Gerät das Virus in den Blutkreislauf, ist zunächst kein Anzeichen einer Infektion zu erkennen", sagt Claudia Detje. "Bei einer Tröpfcheninfektion - über die Nase - führt das eigentlich harmlose Virus ohne IFN-beta zu einer schweren Gehirnentzündung. Ein Organismus, der IFN-beta fehlerfrei bilden kann, wehrt das Virus auch bei einer Tröpfcheninfektion erfolgreich ab." Der Grund: Im Blut stehen diverse andere Interferonvarianten parat, die das IFN-beta ersetzen können. Im Gehirn gibt es diese Mehrfachabsicherung aber offenbar nicht.

Nur wie kommt das Virus ausgerechnet durch die Nase ins Gehirn - und wie wehrt sich ein intaktes Gehirn gegen das Virus? Wie jedes Sicherheitssystem hat auch das des Gehirns seine Schwachstellen. Die Lücke, die die Viren nutzen, ist unser Geruchssinn. Die Viren infizieren den Riechnerv und wandern in ihm zum Gehirn. Die einzelnen Riechfäden des Nervs laufen durch eine durchlöcherte Knochenplatte des Schädels - die sogenannte Siebplatte - zum Riechkolben.

Der gibt die einlaufenden Signale an das Gehirn zur Verarbeitung weiter. Genau an dieser Lücke in der Blut-Hirn-Schranke, dem Übergang vom Riechnerv zum Riechkolben, wird das IFN-beta produziert, um die Viren abzufangen, die den Riechnerv hinaufgewandert sind. Dass das Gehirn tatsächlich eigenständig IFN-beta produziert, haben die Wissenschaftler aus Hannover mit sogenannten Reportermäusen zeigen können. Deren Gewebe beginnt zu leuchten, wenn es Interferon-beta bildet, und die Wissenschaftler können den Infektionsverlauf berührungslos verfolgen, während die Tiere unter einer Spezialkamera schlafen.

"Wir konnten sehen, dass bei einer Infektion über das Blut hauptsächlich die Lymphknoten aktiv werden und IFN-beta bilden. Bei einer Tröpfcheninfektion beginnt zusätzlich der Kopf im Bereich des Riechkolbens zu leuchten", berichtet Claudia Detje. "Das ist der Beweis, dass das Riechhirn sich eigenständig gegen Virusinfektionen zur Wehr setzen kann."

Eine besondere Rolle spielt Interferon-beta auch bei der Multiplen Sklerose. Die Autoimmunerkrankung ist durch Entzündungen des Gehirns gekennzeichnet und kann mit IFN-beta behandelt werden. "Die Frage, die wir uns für die Zukunft stellen: Ist es dann eventuell auch möglich, eine Enzephalitis, bei der die Abwehrreaktion des Riechhirns nicht ausgereicht hat, mit Interferon-beta-Gaben zu behandeln?", schließt Claudia Detje.


Publikation:

Detje CN, Lienenklaus S, Chhatbar C, Spanier J, Prajeeth CK, Soldner C, Tovey MG, Schlüter D, Weiss S, Stangel M, Kalinke U. Upon intranasal vesicular stomatitis virus infection, astrocytes in the olfactory bulb are important interferon Beta producers that protect from lethal encephalitis. J Virol. 2015 Mar 1;89(5):2731-8

Weitere Informationen:

http://www.twincore.de

Dr. Jo Schilling | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Zirkuläre RNA wird in Proteine übersetzt
24.03.2017 | Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft

nachricht Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen
24.03.2017 | Universität Bayreuth

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungsnachrichten

Förderung des Instituts für Lasertechnik und Messtechnik in Ulm mit rund 1,63 Millionen Euro

24.03.2017 | Förderungen Preise

TU-Bauingenieure koordinieren EU-Projekt zu Recycling-Beton von über sieben Millionen Euro

24.03.2017 | Förderungen Preise